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Abstract 

 

Industrial Control Systems (ICS) have an inherent lack of security and situational 

awareness capabilities at the field device level. Yet these systems comprise a significant 

portion of the nation’s critical infrastructure. Currently, there is little insight into the 

characterization of attacks on ICS. Stuxnet provided an initial look at the type of tactics 

that can be employed to create physical damage via cyber means. The question still 

remains, however, as to the extent of malware and attacks that are targeting the critical 

infrastructure, along with the various methods employed to target systems associated with 

the ICS environment.  

This research presents a device using Gumstix technology that emulates an ICS 

field device.  The emulation device is low-cost, adaptable to myriad ICS environments 

and provides logging capabilities at the field device level. The device was evaluated to 

ensure conformity to RFC standards through the use of Triangle MicroWorks and that the 

operating characteristics are consistent with actual field devices.   The device was also 

evaluated in that the device can respond as a PLC to common fingerprinting techniques.  

The device was able to respond according to RFC standards and does respond as a valid 

PLC to common fingerprinting techniques. 
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EMULATING INDUSTRIAL CONTROL SYSTEM FIELD DEVICES USING 

GUMSTIX TECHNOLOGY 

I.  Introduction 

Industrial control systems (ICS) constitute a significant portion of the nation’s 

critical infrastructure.  The power grid, transportation, oil and gas, and public works 

sectors rely heavily on the proper operation of control systems.  A major disruption of 

any of these systems may result in devastating consequences.  The limitations in ICS 

security have resulted in numerous failures, both targeted and un-targeted.  In 2003, the 

Sobig virus infected computers at the Amtrak dispatching headquarters, causing signaling 

systems to shut down and halt ten trains between Pennsylvania and South Carolina [29]. 

The Slammer worm penetrated a computer at an Ohio nuclear plant in 2003, causing the 

safety monitoring system to be disabled for nearly five hours [33].  Most notably, the 

recent Stuxnet virus targeted specific operating characteristics to create direct physical 

consequences [22]. 

1.1 Problem Definition 

Attacks on networking systems follow a general pattern and can be categorized 

according to the following sequential steps: reconnaissance, scanning, gaining access, 

maintaining access and covering tracks [37].  During reconnaissance and scanning, an 

attacker or malware obtains information about the targeted system. Security mechanisms 

(e.g., intrusion detection systems, antivirus and honeypots) are employed in traditional 

Information Technology (IT) systems to detect these malicious actions and provide early 

indicators of potential impending attacks.  For ICS, however, security mechanisms 
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designed specifically for the ICS environment are presently minimal.  Indeed, there is 

lack of monitoring capabilities at the field device level.  The field device level includes 

programmable logic controllers (PLCs) that control and monitor the physical operating 

parameters.  Security monitoring at these end points needs to be improved to detect 

malicious actions and provide early indicators of potential impending attacks. 

End system devices such as PLCs lack the inherent processing power, memory or 

system capabilities to incorporate security programs. Additionally, the highly dispersed 

nature of ICS operations requires extensive costs to retrofit security solutions. Finally, the 

lack of logging capabilities inhibits forensic ability to characterize attack tactics that are 

targeted towards the ICS environment. 

1.2 Goals 

 The goal of this research is to include attack detection within ICS at the field 

device level.  Specifically, this research develops an inexpensive, configurable, and 

portable emulation device that provides logging capabilities.  The solution provides a 

low-cost security device that can be readily configured for implementation across many 

ICS environments.  The PLC emulation device can be employed as an early detection 

sensor, introduces logging capabilities at the field device level, and can help characterize 

cyber attacks against ICS systems.   

 The emulated PLC should respond in accordance to RFC standards with any user 

that may try to interact with it directly.  Additionally, the device must be capable of 

handling invalid traffic and respond to common fingerprinting techniques in a manner 

that will emulate an operational PLC.  The device must handle all forms of traffic and be 
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able to record any interaction with the emulated PLC.  It is also expected to evade being 

fingerprinted as a Linux device while logging any interactions. 

1.3 Scope and Limitations 

The scope of this research focuses on emulation of Modbus TCP communication 

of a PLC.  The six most common functions used in Modbus TCP traffic are emulated on 

the Gumstix technology to show that the emulation can be achieved.  It is expected that 

further functions of the Modbus TCP specification can be added in future development 

iterations.  It is also expected that additional protocols and services much like the 

Modbus protocol can be implemented in future development. 

The research is limited by the inability to access a full ICS operational system.  

The test environment, however, is derived such that findings are expected to be consistent 

with an operational ICS.  Additionally, a common method to fingerprint ICS devices is 

through Ethernet header manufacturer tags.  These tags are represented as Ethernet 

trailers in many common packet dissection platforms, such as Wireshark.  Due to lack of 

access to operational PLCs that implement the Ethernet tags, this technique is not 

evaluated.  It is expected that in future research the tags can be analyzed and readily 

implemented. 

1.4 Organization 

Chapter 2 presents background information about ICS, ICS security and critical 

infrastructure protection.  The Modbus protocol is described along with related research 

for ICS security measures.  Finally, material on emulation in both the IT and ICS sector is 

presented. 



 

4 

Chapter 3 presents the methodology used in this research.  This chapter describes 

the tests created to validate the emulation of the PLC device.  Tests are compiled to cover 

a variety of traffic scenarios a fielded PLC encounters. 

Chapter 4 presents the results from the tests described in Chapter 3.  The results 

from these tests are presented based on each test scenario.  The results demonstrate how 

the emulated device responds as an operational PLC would respond to common 

fingerprinting techniques used in ICS networks.  

Chapter 5 presents the conclusions and future work for this research.  This section 

is followed by several appendices with material to both support the results given in 

Chapter 4 and to allow other to reproduce the emulated PLC on a Gumstix Overo board. 
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II. Background 

2.1 Overview 

 This section discusses topics associated with industrial control systems (ICS), 

critical infrastructure protection, emulation, and related research.  The United States has 

seen a significant and steady increase in cyber attacks on both traditional information 

technology (IT) networks and ICS [20].  Some of these systems are crucial to our national 

critical infrastructure, and greater efforts and attention are being focused on securing ICS 

systems.  Recommendations by the National Office for Cyberspace include working with 

regulatory agencies to develop governing policies for ICS and also work to secure 

government-owned critical infrastructures. 

 As an example of the emerging threat, Stuxnet demonstrated the damage that can 

be caused by malware that targets ICS.  Stuxnet showed that an attack on ICS networks is 

possible and the effects of such an attack can be detrimental.  Stuxnet was able to 

manipulate physical devices connected to the PLC to operate outside their normal 

parameters, sabotaging these devices [10].  Similar attacks are more likely as 

organizations increasingly connect their ICS networks to their corporate networks, 

providing additional attack vectors into ICS networks. 

2.2 Industrial Control Systems Background 

 ICS manage, direct and monitor the behavior of large-scale, distributed systems in 

the critical infrastructure sectors. ICS use central monitoring stations, typically with a 

human machine interface (HMI) for an operator in the loop, to control and monitor 
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remote processes [2].  ICS networks control critical infrastructure such as gas and oil 

pipelines, electric transmission, manufacturing, and many other critical infrastructures.   

Figure 2.1 shows the devices typical to an ICS network and their traditional 

configuration.  A Primary Control Center controls and monitors the overall operations.  

Within the Primary Control Center is the human machine interface (HMI) station, 

Control Server (Master Terminal Unit), Data Historian and Engineering Workstations. 

  The HMI provides the data to an operator in a Graphical User Interface (GUI).  

The GUI allows the operator to interact with the field devices in such a manner that the 

data is easily interpreted.  The Control Server, many times referred to as the Master 

Terminal Unit (MTU), presents data to the HMI while also transmitting data from the 

HMI to field devices [19].  The Data Historian stores all the data that is reported to the 

MTU; this data is used by the engineers at their workstations to determine the efficiency 

of the network and billing purposes. 

 Figure 2.1 also shows a Backup Control Center which is a replica of the Primary 

Control Center that can assume control in case of a potential power outage or natural 

disaster in the region.  The Primary and Backup Control Centers communicate through 

radio signals and Ethernet-based communications to remote stations via specialized 

protocols.  The Remote Stations consist of field devices and the actuators and sensors that 

are connected to the field devices. 

 PLCs are field devices that communicate with the monitoring stations and convert 

digital control messages into physical actions such as opening and closing valves and 

breakers, collecting data from sensor systems, and monitoring the local environment for 

alarm conditions.  There are several proprietary and open source protocols designed 
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specifically for communications in ICS networks including: Modbus, DNP3, ProfiNet, 

Ethernet  IP and many others [24], [40], [34]. 

 

Figure 2.1: ICS network configuration [39]. 

The Regional Control Center is used in larger ICS networks to handle a 

subsection of the network (e.g., power generation facility in a power company).  These 

control centers consist of a HMI and a MTU for local control of the network subsection.  

The ICS network is commonly connected to the Corporate Enterprise Network to allow 

authorized employees access to an HMI station, many times with read only access, to 

view the current status of the network. 
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The communication architecture for control systems uses a hierarchical, request-

response paradigm for message transmission between a master control device and remote 

field devices.  The master sends request messages to the outlying field device to gather 

data or to specify control actions.  The field device collects discrete and analog sensor 

data and maintains actuator settings specified by the master. Response messages are 

generated by the field device after direct requests from the master.  Additionally, the field 

device may notify the master when alarm conditions are detected. 

2.3 Modbus Protocol 

Modbus, designed in 1979, is one of the widest implemented communication 

protocols in the industrial control system environment [26].  Originally designed for 

serial communication, messages are transmitted between a master and field devices.  The 

Modbus message format, depicted in Figure 2.2, contains three fields: outstation slave 

address, Modbus application protocol data unit (PDU), and an error checking field (CRC) 

[24].  The slave address identifies the intended recipient, with each device on the network 

assigned a unique identifier.  The application PDU is comprised of a one byte function 

code specifying desired actions and up to 252 bytes for function parameters.  The CRC 

Figure 2.2: Modbus serial message format. 
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field is used to identify integrity errors that occur during message exchange.  

To leverage the benefits and cost savings of LAN/WAN technologies, Modbus 

was modified for transmission to accommodate TCP/IP channels.  Indeed, Modbus TCP 

extends the serial implementation by enabling a master to have multiple outstanding 

transactions, and an outstation to engage in concurrent communications with multiple 

masters [25].  In addition to the original serial message data fields, a Modbus application 

protocol (MBAP) header is added to facilitate IP communication. Figure 2.3 shows the 

message format of a Modbus TCP packet.  The MBAP header contains a transaction ID, 

protocol designator, data length and unit id number.  The Modbus data frame is 

encapsulated as a TCP payload and transmitted using Internet Assigned Numbers 

Authority (IANA) designated port 502. 

The Modbus specification identifies a common set of function codes.  The basic 

function codes implemented in the majority of systems are listed below, with the hex 

representation identified in parenthesis.  Note that individual implementation schemes 

may use additional function codes designated by the standard for individual system 

configuration. 

Figure 2.3: Modbus TCP message format. 
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  (0x01) Read Coils - This function code is used to read from 1 to 2000 contiguous 

status of coils in a remote device. 

 

 (0x02) Read Discrete Inputs - This function code is used to read from 1 to 2000 

contiguous status of discrete inputs in a remote device. 

 

 (0x03) Read Holding Registers - This function code is used to read the contents of 

a contiguous block of holding registers in a remote device. 

 

 (0x04) Read Input Registers - This function code is used to read from 1 to 125 

contiguous input registers in a remote device. 

 

 (0x05) Write Single Coil - This function code is used to write a single output to 

either ON or OFF in a remote device. 

 

 (0x06) Write Single Register - This function code is used to write a single holding 

register in a remote device. 

 

 (0x0F) Write Multiple Coils - This function code is used to force each coil in a 

sequence of coils to either ON or OFF in a remote device. 

 

 (0x10) Write Multiple Registers - This function code is used to write a block of 

contiguous registers (1 to 123 registers) in a remote device. 

 

 (0x14) Read File Record - This function code is used to perform a file record 

read. 

 

 (0x15) Write File Record - This function code is used to perform a file record 

write. 

 

 (0x16) Mask Write Register - This function code is used to modify the contents of 

a specified holding register using a combination of an AND mask, an OR mask, 

and the register's current contents. 

 

 (0x17) Read/Write Multiple Registers - This function code performs a 

combination of one read operation and one write operation in a single MODBUS 

transaction. 

 

 (0x18) Read FIFO Queue - This function code allows the read the contents of a 

First-In-First-Out (FIFO) queue of register in a remote device. 

 

 (0x2B) Encapsulated Interface Transport (EIT) - The MODBUS Encapsulated 

Interface (MEI)Transport is a mechanism for tunneling service requests and 

method invocations, as well as their returns, inside MODBUS PDUs. 
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Consider, for example, communication from a master device to a PLC to close a 

valve in an oil and gas pipeline.  The master generates a request message that specifies a 

write action with opcode 05 for address 01 containing data value FF to close the control 

valve.  The PLC performs the action and responds with a reply message containing 

opcode 05 and address 01 to indicate completion of the action.  Subsequent read requests 

from the master returns a value indicating the valve is closed. 

2.4 Critical Infrastructure Protection 

 Critical infrastructure protection (CIP) relates to the preparedness to an incident 

involving critical infrastructure.  In testimony to Congress by Gregory C. Wilshusen, 

Director, Information Security Issues, defines CI as: 

 “Critical infrastructures are systems and assets, whether physical or virtual, so 

vital to our nation that their incapacity or destruction would have a debilitation impact 

on national security, economic well-being, public health or safety, or any combination of 

these” [11]. 

 Critical Infrastructure is divided into 18 sectors based on Homeland Security 

Presidential Directive 7 (HSPD-7) [13].  In HSPD-7, the President designates the 

Secretary of Homeland Security as the “principal Federal official to lead Critical 

Infrastructure and Key Resources (CIKR) protection efforts” and assigns responsibilities 

to Federal Sector-Specific Agencies (SSAs).  The list of sectors and their corresponding 

SSAs are provided in Table 2.1.  This directive provides the criteria for establishing 

additional sectors of protection in the future.  Many of these sectors are very complex and 

interconnected in such a way that if one of these sectors is disrupted it could cause 
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disruption in other sectors.  An example of this is if an attacker is able to prevent the 

transmission of power to other facilities such as a manufacturing plant, production at that 

plant halts.  A similar condition occurred in 2003 when a fault in the power grid caused 

an estimated 55 million people to lose power [30].  As a result, boil water advisories went 

into effect, train service in the region shut down, airports in the region shut down, many 

oil refineries on the east coast had to shut down, cellular communications was disrupted 

due to cell towers backup generators shut off, and many large factories had to stop or 

slow productions because of supply problems.   Although the effects were not caused by 

a malicious actor, the scenario demonstrates the impact to critical services.  

Table 2.1: Sector-Specific Agencies and assigned CIKR sectors [5][6][28]. 

Sector Specific Agency Critical Infrastructure and  

Key Resources Sector 

Department of Agriculture 

Department of Health and Human Services 
Agriculture and Food 

Department of Defense Defense Industrial Base 

Department of Energy Energy 

Department of Health and Human Services Healthcare and Public Health 

Department of the Interior National Monuments and Icons 

Department of the Treasury Banking and Finance 

Environmental Protection Agency Water 

Department of Homeland Security 

     Office of Infrastructure Protection 
Chemical  

Commercial Facilities 

Critical Manufacturing 

Dams 

Emergency Services 

Nuclear Reactors, Materials and Waste 

     Office of Cybersecurity  

     and Communications 
Information Technology 

Communications 

     Transportation Security Administration Postal and Shipping 

     Transportation Security Administration 

     United States Coast Guard Transportation Systems 

     Immigration and Customs Enforcement 

     Federal Protective Service Government Facilities 
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2.5 Industrial Control Systems Security 

 Control systems offer unique security challenges [17].  A primary benefit of 

control systems is that remote and isolated locations can be monitored centrally without 

the need for onsite personnel.  From a security standpoint, however, this provides entry 

points into the system that have minimal physical safeguards.  Additionally, the trend to 

interconnect devices using networking technologies introduces entry points, often via the 

Internet.  

The limitations in ICS security have resulted in numerous failures, both targeted 

and un-targeted.  In 2003, the Sobig virus infected computers at the Amtrak dispatching 

headquarters, causing signaling systems to shut down and halt ten trains between 

Pennsylvania and South Carolina [29].  The Slammer worm penetrated a computer at an 

Ohio nuclear plant in 2003, causing the safety monitoring system to be disabled for 

nearly five hours [33].  At the Browns Ferry nuclear power plant in 2006, a “Data Storm” 

spike in traffic caused a PLC to crash, resulting in the failure of recirculation pumps and 

forcing a manual reactor shutdown [42].  Most notably, the recent Stuxnet virus targeted 

specific operating characteristics to create direct physical consequences [22]. 

ICS networks are connected to the Internet despite known risks.  Leverett 

discovered 10,358 ICS related devices connected to the Internet through a search over a 

two year period from 2009-2011 [43].  Leverett used a total of 33 queries to find over 

10,000 devices using an open source search engine, SHODAN.  He also used Google’s 

geocoding service to locate the devices by the latitude and longitude using the country, 

city name, and country code.  Of the devices discovered, only 17 percent implemented 

any type of authentication [21]. 
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ICS networks require constant integrity and availability.  ICS network engineers 

typically have not considered confidentiality because the networks were primarily air 

gapped.  Integrity is important because valid traffic is necessary to ensure that a device is 

operating within normal operating parameters.  Availability is also very important 

because the systems are responsible for critical services that require optimal uptime.   

A primary shortfall in ICS security is the lack of ability to monitor and detect 

malicious events at the field device level.  PLCs have little memory, hard drive space, or 

processing power and are not designed to execute additional applications. As a result, 

there are minimal security mechanisms designed specifically for the ICS environment.  

The lack of early attack indicators and logging capabilities impedes identification of 

attacks and the ability to perform forensics if a system is compromised.   

Encountered in many ICS networks are legacy system devices.  It is not abnormal 

for a system to be in use for 30 years in a traditional ICS network [19].  Many of these 

systems must be in operation 100% of the time, so they cannot be taken offline for 

system upgrades even when a security hole has been discovered.  These systems are 

typically left vulnerable for many years without replacement or upgrades.   

ICS security has to deal with the challenge of bridging the gap between 

Information Technology (IT) experts who know the traditional security solutions and the 

engineers that configure ICS networks.  IT experts are typically concerned about security 

in the enterprise networks and the engineers are concerned about system availability and 

functionality [19]. 
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2.6 ICS Security Mechanisms  

There is a need to develop and implement a more robust security mechanism for 

ICS networks.  Digital Bond has developed an IDS signature package for four different 

control system protocols [7].  The signatures are able to defend against known attacks, 

malformed protocol requests and rarely used commands.  There is a need to discover 

previously unknown attacks to create additional signatures for the IDS.  Note that the IDS 

is designed for the perimeter network layer and not the field device layer.   

Another research team, Morris and Pavurapu [27], established a bump-in-the-wire 

device that is placed in a network to encrypt, analyze, and log each network packet.  This 

device is able to defend against response injection, command injection, and denial of 

service on a control system.  This inline system introduces the risk of compromising 

availability of the systems it is protecting if it goes offline. 

 Many of the ICS security developments work to incorporate in a layer of 

encryption.  Balitanas et al. [1] look to add in a crossed-cipher scheme to increase 

security through encryption with reduced delay in the system compared to IT encryption 

techniques.  The authors note that there are significant challenges when implementing 

cryptography because of the time requirements of ICS systems and the time delay added 

by encryption, decryption and processing time. Unfortunately, this solution would have to 

be built into all devices and adds additional latency counter to requirements of real time 

environments.   

Other secure ICS architectures are described by Pal et al. [31].  The authors take 

into account the limitations of limited computational capacity, limited space capacity, 

low bandwidth and real-time processing.  The architectures discussed each have their 
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own advantages of key storage and distribution among field devices.  Each of the 

architectures requires a different number of keys to be stored at the field device layer 

depending if the field devices need to communicate between each other. 

 There are currently inline solutions that have been created such as the EtherGuard 

Encryptor developed by Ultra Electronics [41].  These products offer a way to help 

increase security; however, if these devices are inline and fail they will disrupt the 

availability of the overall system.  Additionally, these devices introduce latency in the 

network traffic that may be detrimental to the need to operate in a real-time environment 

[19]. 

 Stouffer’s Guide to ICS Security [39] recommends integrating security into 

networks through network segregation.  The first recommendation is to keep the ICS 

system air-gapped from the corporate network.  However, Leverett [21] has shown that 

many networks are connected to the Internet with or without the network administrator’s 

knowledge.  Stouffer also presents multiple firewall models to create network segregation 

if the network must be connected to the Internet.  These models include: a dual-homed 

machine (i.e., a system connected to both the controlled ICS network and the corporate 

network), firewall between the corporate and ICS networks, a firewall and router between 

the corporate and ICS networks, a firewall with a demilitarized zone (DMZ) between the 

corporate and ICS networks and two firewalls between corporate and ICS networks.   

Stouffer notes that firewalls are not the best solution but that the firewalls do provide an 

effective baseline level of security. 

 Remote forensics on ICS networks has been demonstrated by Chavez et al. [3] 

when they showed that Encase Enterprise can be used to perform forensics on ICS 
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networks.  Test results from this research demonstrate the feasibility of conducting 

forensics on a field device without disrupting normal operations. 

2.7 Network Attack 

 Skoudis describes a five step process for attacking a network: Reconnaissance, 

Scanning, Gaining Access, Maintaining Access and Covering Tracks and Hiding [37].  

Reconnaissance requires discovering as much about a target as possible.  Attackers use 

common fingerprinting mechanisms to find the machine they are attempting to 

compromise.  SHODAN, for example, allows an intruder to perform reconnaissance to 

find a device vulnerable to an attack.  The next step, scanning, occurs when an attacker 

knows IP addresses of targeted systems and involves scanning to find potential 

vulnerabilities.  A common tool used for scanning systems to find more information 

about the device is Nmap.  Nmap determines which ports are open and potentially 

vulnerable to attack.  The next step, gaining access, is when the attacker uses an exploit 

against a vulnerability to gain access to the system.  There are many exploit databases or 

tools that an attacker can consult to get a description of an exploit or to launch an 

automated attack.  Once the attacker has access they use a Trojan Horse or add a 

backdoor on the system to maintain the access.  Once the attacker knows that they are 

able to maintain access on a system, they cover their tracks by installing rootkits, 

modifying logs, creating hidden files and establishing cover channels. 

2.7.1 Fingerprinting 

Fingerprinting is a standard technique used to identify the OS running on the 

target system.  In control systems, fingerprinting is used to find the make and model of 
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field devices [9].  In the reconnaissance and scanning phases of network attack, 

fingerprinting of ICS field devices is performed in a variety of ways.  There are four 

identifiable elements on most field devices: known set of open ports through port scans, 

known behavior of services through banner grabbing, Ethernet header manufacturer tags 

and known MAC address space.  Through the combination and correlation of these items, 

a fingerprint can be produced for a field device. 

2.7.1.1 Port Scan 

  Most PLCs operate on a select set of proprietary ports.  Allen Bradley 

devices, for example, run a proprietary protocol, Ethernet IP, over port 44818.  If the 

device is scanned and port 44818 is determined open, an attacker could conclude that the 

device has a likelihood of being an Allen Bradley device.  If a port scan identifies a 

particular set of open ports, it is likely that the device is from a specific vendor.  Devices 

that communicate Modbus TCP have TCP port 502 open.  Once an attacker discovers 

open ports they are able to further fingerprint the device using banner grabbing 

techniques. 

2.7.1.2 Banner Grabbing 

  A device can be correctly identified through banner grabbing via known 

responses on open ports.  The SHODAN system, used by Leverett during his research, 

was able to compile a list of responses from banner grabs against open ports on devices.  

Banner grabbing on web servers is very common because many times information 

obtained corresponds to a company that manufactures the device. 

 Modbus designated port 502 is also susceptible to banner grabbing.  The Modbus 

TCP protocol makes it mandatory to incorporate the Encapsulated Interface Transport 
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function with the Modbus Encapsulated Interface type Read Device Identification.  This 

function allows any Modbus TCP connection to read very critical information about the 

device.  The mandatory objects that must be defined are vendor name, product code and 

major/minor revision.  The information returned from those three objects identify the 

exact device and firmware. 

2.7.1.3 Ethernet Manufacturer Tags 

  Digital Bond discusses how some devices have manufacturer specific tags 

in the Ethernet header of response packets from field devices [9].  This field is placed as a 

Ethernet trailer used to designate that the traffic is to a specific device.  

2.7.1.4 MAC address 

 The last piece that can be used to fingerprint a field device is the MAC 

address space of the vendor.  Each manufacturer of Ethernet enabled devices is assigned 

a MAC address range which can be used to determine the vendor of the device if the 

fingerprinting is done on a local segment. 

2.8 Emulation 

 Emulation is software or hardware that allows one system to imitate the behavior 

of another system.  This phenomenon is very common in the IT sector with the 

development of honeypots.  A honeypot is a closely monitored computing resource that is 

intended to be probed, attacked or compromised.  More precisely, a honeypot is “an 

information system resource whose value lies in unauthorized or illicit use of the 

resource” [38].  Honeypot technology has been around for many years on the Internet but 

only recently has it been introduced in the ICS community.  Honeypots were first 
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discussed, in 1990, with the book Clifford Stoll’s The Cuckoo’s Egg and Bill Cheswick’s 

“An Evening With Berferd”; the first honeypot was deployed in 1997 [38].   

Honeypots are an effective way to detect intruders and to gather malware samples 

to create signatures to prevent future attacks.  Honeypots add value to the security of a 

system by detecting and logging threats and allowing mitigations of such attacks.  In a 

honeypot, an inbound connection implies the system is being scanned or attacked.  This is 

the case because honeypots are intended to be dormant with no legitamate traffic sent to 

the devices.  Outbound connections usually represent a compromise of the system 

because honeypots are configured not to send traffic on the network. 

2.8.1 Honeypot Overview 

There are two types of honeypots: production and research honeypots.  Each 

honeypot type operates in the same manner but are used for different objectives.  

Research honeypots are used to gather malware for further analysis and creation of 

detection signatures.  Production honeypots add to the overall security posture of an 

organization by detecting attacks and mitigating the risk of attackers [38].  Mitigating the 

risk is done through many different means such as blocking inbound connections from 

the specific IP address.   

 Honeypots mainly consists of two variations: low-interaction and high-interaction 

honeypots.  Low-interaction honeypots consists of emulated services and operating 

systems which provide targets.  These honeypots are easily fingerprinted as they only 

emulate the basic services.  High-interaction honeypots provide real systems applications 

and services for the attacker to interact with.  High-interaction honeypots are difficult to 
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set up because they need to be secure enough so an attacker cannot use the machine to 

attack other machines in the network [38].   

2.8.2 Advantages of Honeypots 

 Honeypots afford advantages including valuable data, resources, simplicity and 

return on investment [15].  The first advantage is the value in the data collected.  

Honeypots only collect data when interacted with, making the data much more 

manageable to analyze than traditional network logging systems.  Additionally, 

honeypots reduce the amount of false positives because any interactions indicate 

unauthorized traffic.  Honeypots are able to detect many more attacks because any 

activity in the honeypot is an irregularity which makes novel attacks easier to identify.  

This is more effective than alternatives that use signatures which require previous 

identification of the attack. 

 Honeypots require minimal resources for employment.  Honeypots can be set up 

on aging computers because they have little interactions and typically do not have to deal 

with resource exhaustion.  Even large networks only require one or two systems to 

monitor any kind of attack on the network. 

 Honeypots are also very simplistic.  One does not have to keep up with signature 

sets or rule sets; someone just needs to place the honeypot somewhere in the network and 

then wait for the attack.  Some honeypots are more complex but all follow the same 

simple premise: if something interacts with the honeypot it is ilegitimate communication 

and needs to be examined [38].  
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 The last advantage to honeypots is the return on investment.  Honeypots are cost 

effective because of minimal resource requirements.  Honeypots also demonstrate that if 

it has been attacked that someone has been able to infiltrate the network [38].   

2.8.3 Disadvantages of Honeypots 

 While honeypots have many advantages, they also have disadvantages.  The first 

disadvantage is that they have a narrow field of view.  Honeypots only see what traffic is 

directed at the honeypot.  If the attack is never directed at the honeypot it will never 

detect the attack.   

 Honeypots are also susceptible to fingerprinting.  Fingerprinting occurs when an 

attacker can identify the true identity of the honeypot because of certain characteristics or 

behaviors [38].  If the attacker can correctly identify the honeypot, he can avoid it when 

attacking the network.  While uncommon, fingerprinting can also be done if the 

programming of the honeypot has misspelled a word somewhere which alerts an attacker 

when the response is sent back to the attacker. 

 The last disadvantage is the risk that a honeypot introduces into the network.  

While the amount of risk each type of honeypot introduces into the environment is 

different, the risk is still present.  Once a honeypot has been attacked and compromised it 

can be used to attack, infiltrate or harm other computer systems in the organization or 

other organizations [15]. 

2.8.4 Honeypot Attributes 

 There are three fundamental requirements of honeypots: data control, data capture 

and data analysis.  The first, data control, is used for mitigation of risk through the 

containment of the activity of the attacker.  This is accomplished by controlling what an 
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attacker is able to do once on the honeypot.  Note that it is important to make sure that 

once the honeypot is compromised, another system cannot be compromised by it.  A 

common way to do this is with a fail-safe that prevents all outbound connections from the 

honeypot once compromised.   Honeypots should also alert when a system has been 

compromised to notify an administrator of the event.   

 Data capture is the next fundamental requirement which includes logging and 

auditing functions.  The most common way to collect the data is with a layer two bridge 

that collects any traffic that has been directed to or from the honeypot.  Note that nothing 

should be stored on the local honeypot machine to prevent fingerprinting information for 

the honeypot to the attacker. 

 The last requirement is data analysis which is the synthesis of information 

gathered from the honeypot.  If multiple honeypots are implemented across a large 

network spanning multiple time zones the information needs to be standardized and have 

synchronized time stamping to correlate the data.  This is important for analyzing the 

attack methods to ensure continuity between collection methods [15], [16].  

2.8.5 Honeypot Technology in IT 

 There are many different solutions developed for the IT sector.  The following set 

of solutions are indicative of current honeypots in IT.  The first solution in the IT sector is 

honeynets.  A honeynet is a “high-interaction honeypot designed to capture extensive 

information on threats “[16]. A honeynet is an architecture with multiple, networked 

honeypots.  Each of the honeypots in the network can be different systems ranging from 

Windows workstations to IIS web servers to Cisco routers.  Honeynets rely on the same 

basic principles that honeypots follow in that they are not productions systems so that any 
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communication with these systems is considered malicious.  In the paper “Know Your 

Enemy: Honeynets [16]” The Honeynet Project states:  

“In many ways a honeynet is like a fishbowl. You create an environment 

where you can watch everything happening inside it. However, instead of putting 

rocks, coral, and sea weed in your fish bowl, you put Linux DNS servers, HP 

printers, and Juniper routers in your honeynet architecture. Just as a fish interacts 

with the elements in your fishbowl, intruders interact with your honeypots”[16].   

Figure 2.4 shows an example of a typical network configuration of a honeynet.  The most 

critical component to a honeynet is a Honeywall. 

 A Honeywall is a transparent bridge that is setup to enable data capture, data 

control and data analysis.  Honeywall is configured with three interfaces, two for the 

Figure 2.4: Network setup for Honeynet [16]. 
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transparent bridge and one for management.  A transparent bridge has no IP address so all 

the traffic passes promiscuously through the device.  The third interface is configured for 

th management network to enable remote control of the Honeywall.  Honeywall limits 

malware damage by implementing a fencelist (i.e., a list of IP’s for non-target computers 

which honeypots on the LAN cannot communicate with).  Honeywall uses snort-inline 

[23] as an intrusion protection system to prevent attackers from sending known exploits 

to other machines once the machine is compromised.  The number of connections out is 

typically filtered from the Honeywall to prevent too much activity once the box has been 

compromised.  Honeywall also uses the monitoring system Sebek [35]. 

 Sebek is a client-server data capture tool which closely monitors and logs all user 

activity.  Sebek replaces several common system calls which can then observe all 

accessed data [35].  Sebek is a kernel-level rootkit which hooks and replaces common 

calls.  Sebek has the following capabilities: record keystrokes of a session that is using 

encryption, recover files copied with SCP, capture passwords used to log in to remote 

Figure 2.5: Typical Sebek deployment [14]. 
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system, recover passwords used to enable Burneye protected binaries and accomplish 

many other forensics related tasks [14].   In Figure 2.5, the client module is installed on 

the honeypot A.  The attacker’s activity captured by the honeypot is then sent to the 

network and passively collected by the server (Honeywall Gateway).  Sebek data is not 

stored on the target, but rather transmitted via UDP to the sniffing honeywall or 

designated log server.  Packets are masked from the attacker, even if a sniffer is run on 

the target through the use of a special Kernel module created to interact directly with the 

network device driver instead of using the TCP/IP stack [14].  

 Honeyd is another common honeypot solution.  Honeyd is an open source low-

interaction virtual honeypot.  Honeyd has the capability to simulate thousands of virtual 

systems on one single physical system.  Figure 2.6 shows a sample configuration of 

honeyd.  Honeyd is able to provide arbitrary services, via a configuration file, that 

interact with an attacker.  Honeyd simulates each operating system at the TCP/IP level  

which provides honeyd the ability to deceive Nmap into believing the virtual honeypot is 

an actual operating system.   

Figure 2.6: Sample configuration of Honeyd [35]. 
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2.9 Honeypots in ICS 

 Honeypots are useful in ICS networks to help improve the overall security 

posture.  Today there is no nominal way to detect malware running on PLCs.  Consider 

the case of Stuxnet which was on the PLCs for a year before being detected [10].  Indeed, 

a honeypot for ICS would help identify malware currently in ICS networks and an ability 

to study any future malware.   

Honeypots aid in the overall security posture through prevention, detection and 

response.  Honeypots help with prevention by acting as an early warning of an attack.  A 

honeypot generates an alert for any connection allowing an administrator to block the IP 

address and prevent the user from attacking any other machines.  Some honeypots use 

deception or deterrence to prevent attackers from further attempts to attack the system.  

Deception involves making the attacker waste time on a honeypot that has no value and 

deter them from trying to attack production machines.  Deterrence is used when the 

honeypot is coded to inform the attacker that the box they are interacting with is a 

honeypot in an attempt to dissuade them from attacking the network any further.   

 Honeypots also add to ICS security posture through detection.  Honeypots are an 

effective way at detecting attacks through reducing false positives, false negatives and 

through data aggregation.  The last way that honeypots add to the overall ICS security 

posture is through response.  Honeypots collect all the data to and from the system so the 

data necessary to respond to an incident can be retrieved by the incident responder.  The 

honeypot can also be taken offline for further analysis without affecting production 

systems [38].     
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 There are many IT solutions currently developed; however, these solutions are not 

readily applicable to ICS networks.  The IT honeypots are not effective because the cost 

of solutions to disseminate across ICS is too high.  Additionally, solutions that place a 

honeypot in line with a production device creates a point of failure which could disrupt 

the availability that is critical to ICS networks.  Current IT solutions are also not 

applicable to ICS networks due to the nonstandard communication protocols.      

2.9.1 Current Honeypots in ICS 

 Even with the current landscape and challenges, some solutions have been 

proposed for ICS networks.  The first solution is a SCADA Honeynet that was started in 

2004 utilizing Honeyd, simulating a limited set of services from a popular PLC [32].  The 

goals of this project were to create a framework to simulate a variety of industrial 

networks on a single Linux host running honeyd (e.g., minimal Modbus TCP functions, 

FTP, Telnet, and web server).  These servers are only basic simulations and offer a 

limited number of functions to interact with.  The work is no longer maintained; however, 

a follow on was initiated by Digital Bond.   

 The work by Digital Bond utilizes two separate virtual machines.  One of the 

virtual machines is a modified Honeywall which implements Digital Bond SCADA IDS 

signatures to detect malicious attacks against the second virtual machine [8].  This is an 

efficient tool that can also be used in line with a physical device as well.  Note that this 

introduces latency and could fail causing communication to the physical device to fail.  

The second virtual machine is a simulated PLC that exposes a number of services to an 

attacker [8].  Digital Bond implements Modbus TCP protocol, FTP server, Telnet, HTTP 

and SNMP servers.   These services are much like the other project in that they only 
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simulate the banner for the different protocols and minimal basic functions.  Figure 2.7 

shows the configuration of the two virtual machines from Digital Bond.  

These solutions are both efficient solutions but are only designed for a particular 

PLC or particular protocol.  The solutions require more modularity to allow expansion 

into the majority of protocols and devices in ICS networks.  

2.9.2 Emulation Requirements 

ICS honeypots have extra challenges associated because of the variety of ICS 

networks.  There are many manufacturers of PLCs, differing protocols, and system-

specific configurations for ICS networks.  This makes it challenging for a single 

honeypot solution to emulate a variety of systems.  Additionally, each PLC has different 

field devices ranging from sensors to valves.  As a result, each PLC has a different 

configuration to control each of these field devices.   

Figure 2.7: SCADA Honeynet configuration [8]. 



 

30 

 When a honeypot detects a new attack, an analyst can analyze it to create a 

signature to input into the IDS to prevent the attack in the future [18].  This idea is 

restated by the Department of Energy when they provided the “21 Steps to Improve 

Cyber Security of SCADA Networks.”  Number eight in the list is to implement internal 

and external IDS and establish 24-hour-a-day incident monitoring [4].   

2.10 Summary 

 This chapter explains ICS, critical infrastructure protection, emulation and the 

current technology surrounding honeypots.  It details current ICS honeypots and short 

comings with the current technology.  ICS honeypots need to be modularized and allow 

easy reconfiguration.  This chapter demonstrate the necessity for additional security in 

ICS networks and how current IT solutions are not capable of protecting the vastly 

different ICS networks.  The next chapter discusses the methodology used to evaluate the 

effectiveness of the ICS honeypot created as part of this research. 
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III. Methodology 

 This chapter discusses the methodology for evaluating an emulated PLC to 

determine if the device responds to basic network traffic and can avoid common 

fingerprinting techniques.  Successful emulation of a PLC utilizing Modbus TCP traffic 

is contingent upon the device (1) correctly responding to standard traffic, (2) avoiding 

being fingerprinted as a Linux machine using common ICS fingerprinting techniques and 

(3) correctly handling invalid traffic.   

3.1 Problem Definition 

3.1.1 Goals and Hypothesis 

 The goal of this research is to include attack detection within Industrial Control 

Systems (ICS) at the field device level through development of an inexpensive, 

configurable and portable emulation device that contains logging capabilities.   

 It is expected that the emulated PLC responds according to RFC standards with 

any user that may try to interact with it directly.  It is expected that the device responds to 

all traffic sent to the device in a valid manner and be able to log all interactions with the 

emulated PLC.  It is also expected to respond as an operational PLC to common ICS 

fingerprinting techniques (i.e., Port Scan, MAC Address, and Banner Grabbing). 

3.1.2 Approach 

 This research determines the effectiveness of the emulated PLC at emulating an 

operational PLC.  Allen Bradley PLCs are used as a baseline for fingerprinting tests and 

invalid traffic tests while the Modbus TCP RFC is used as the baseline for standard 

traffic response tests.  The emulated PLC is evaluated to see how responses compare with 



 

32 

the baseline and if the interaction is logged.  The emulated PLC and Allen Bradley PLCs 

are subjected to a variety of tests outlined in Section 3.3 to determine if the devices 

respond in the appropriate manner with the corresponding baseline.  Analysis of the 

results is examined to determine the effectiveness of the emulated PLC at detecting 

traffic on ICS.  Additionally, a qualitative analysis using Air Force ICS assessors is used 

to provide a notional evaluation of the effectiveness of emulating an operational PLC. 

3.2 Environment 

Figure 3.1 shows the environment used for the following experiments.  The HMI 

is a Windows 7 64 bit SP1 machine running Triangle MicroWorks Protocol Test Harness, 

Nmap and Wireshark.  Triangle MicroWorks Protocol Test Harness is a package that has 

been designed to test PLC devices to determine if they conform to protocol standards.  

The HMI has a 500GB hard drive with 4GB of memory.  The PLCs are a factory install 

of an Allen Bradley Micrologix 1100 and an Allen Bradley CompactLogix 1769.  The 

Figure 3.1: Network diagram. 
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emulated PLC is an Overo Earth COM Gumstix.  Gumstix is a mini computer, not 

surprisingly, about the size of a stick of gum (see the bottom of  Figure 3.2).  It runs a 

Linux based platform using the Open Embedded framework and costs approximately 

$200 [12]. The Gumstix board has an ARM Cortex-A8 CPU, 512MB of flash memory 

and 512MB of RAM with a microSD card slot to be used as non-volatile storage.  In the 

case of this research, an 8GB microSD card is used.   Gumstix computers leverage 

expansion boards to extend IO capabilities to a range of operations (e.g., GPS, bluetooth, 

and 802.11 wireless).  For this research, the Tobi-Duo expansion board (shown in the top 

of Figure 3.2) is incorporated to provide a dual NIC configuration allowing a primary 

NIC for ICS communication and another NIC for out-of-band logging.  The Gumstix 

Overo CPU board snaps onto the Tobi-Duo expansion board for quick connection.  The 

operating system is Linux 2.6.34 built and installed on the device. Appendix A provides 

Figure 3.2: Representative Gumstix device. 
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the steps required to build the emulated PLC. The logging device is an Ubuntu 11.10 

Machine with a 120GB hard drive with 2GB of memory running syslog server capturing 

the logging entries sent from the emulated PLC.  The systems are connected with CAT5e 

cable which supports up to 100MB/s connection.  Figure 3.1 shows that both the 

emulated PLC and the Allen Bradley PLCs communicate directly with the HMI.  The 

figure depicts that the emulated PLC can sit in a network next to any vendor specific 

device (e.g., Siemens, Omron, Allen Bradley).  For testing purposes, however, the PLCs 

that are connected to the switch are an Allen Bradley MicroLogix 1100 and an Allen 

Bradley ControlLogix 1769.  The emulated PLC also communicates with the data 

logging device through logs sent out the secondary NIC.   

3.3 Evaluation Technique 

3.3.1 Functionality Test through Modbus Traffic Emulation  

 The Modbus traffic test cases are used to verify the ability of the emulated PLC to 

communicate in accordance with Modbus RFC standards.  Although there are numerous 

Modbus TCP standard function codes, the most commonly used include: 

 Read Coil 

 Write Coil 

 Read Discrete Inputs 

 Read Holding Registers 

 Write Holding Register 

 Read Input Registers   

 

 Each of the function codes listed above is sent in accordance with Triangle 

MicroWorks and Modbus Poll evaluation process to the emulated PLC in order to verify 

proper responses.  The commands are sent in the order shown above with thirty seconds 
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in between each packet being transmitted.  Note that the focus of these tests is to evaluate 

operational functionality; analysis on traffic rate limits is recommended for future work.  

The following two software packages are used to test the emulated PLC against the traffic 

standard: 

1. Triangle MicroWorks Protocol Test Harness 

2. Modbus Poll 

Triangle MicroWorks Protocol Test Harness is a software package created to test if a 

device adheres to the Request for Comments (RFC) for a given protocol.  This checks the 

response packets bytes to make sure that the packet is a valid packet.  If the packet is 

valid the Test Harness logs each response received, and if the packet is invalid the Test 

Harness times out waiting for a valid response.  Modbus Poll is a free software package 

created to communicate with Modbus enabled devices.  This software is also used to 

communicate with the emulated PLC to see if the responses are considered valid.   

The following steps outline how to complete each test case.  First, the emulated 

PLC is attached to the switch and the logging device using CAT5 cables.  After the 

device is turned on and both Ethernet NICs have been initialized then, SSH is initiated 

from the logging device to the emulated PLC.  The command ‘ifconfig’ is run to 

determine the IP address of the emulated PLC.  Next, the command ‘ps –ef’ is run and 

then viewed to make sure that both tcpdump and the python script are initiated.  On the 

HMI, Wireshark is started to capture the network traffic to and from the emulated PLC.  

The software indicated in the test case (i.e., Triangle MicroWorks or Modbus Poll) is 

then started, and each of the six most popular Modbus TCP commands listed above are 

initiated by the software.  After the six commands conclude, the software and Wireshark 
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are stopped and the capture saved for analysis.  An SSH session is then initialized to the 

emulated PLC and the pcap created from tcpdump is retrieved.  The syslog on the logging 

machine is also saved.  The emulated PLC is then restarted to make a consistent starting 

point for each test.  

The emulated PLC is successful if the program used for testing is able to receive a 

valid response from the device.  The traffic is analyzed to see if the Modbus Wireshark 

dissector is able to determine that the traffic being sent from the emulated PLC is 

Modbus TCP.  The test is not successful if the device does not respond in an expected 

manner.   

The emulated PLC must keep state as part of the functionality such that if a coil is 

turned from off to on, subsequent reads indicate the coil is now turned on.  This test is 

successful if a second Read Coil response shows the coil has transitioned status.  The test 

is unsuccessful if the response to the second Read Coil shows that the coil did not 

transition state.  

3.3.2 Fingerprinting Test Cases 

3.3.2.1 Port Scan Test Case 

The intent of the emulated PLC is to act as an operational PLC and avoid being 

fingerprinted as a Linux device.  The most common way to detect a device is through 

port scanning with a tool such as Nmap.  Nmap is run to scan the device for open ports 

but can also attempt to determine the operating system (OS) that the device is running.  In 

the Port Scan Test Cases the following devices are scanned: 

1. Emulated PLC 

2. Allen Bradley MicroLogix 1100 
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3. Allen Bradley ControlLogic 1769 

These scans determine if it is possible to fingerprint the device as an emulated PLC 

through scanning and examining the results against the scans of two Allen Bradley 

devices that are configured to communicate over Ethernet/IP (port 44818).  The Allen 

Bradley devices do not communicate over Modbus TCP so the devices do not have port 

502 open as the emulated PLC; however, they do have a standard ICS communication 

protocol (Ethernet/IP port 44818) that is open in the same manner as the Modbus port for 

the emulated PLC.   

The following outlines how to complete each test case.  First the emulated PLC is 

connected to the switch and the logging device.  Both Allen Bradley devices are 

connected to the switch with Ethernet cables.  After the emulated PLC is turned on and 

both Ethernet NICs have initialized then SSH is initiated from the logging device to the 

emulated PLC.  The command ‘ifconfig’ is run to determine the IP address of the 

emulated PLC.  Next, the command ‘ps -ef’ is run and then the results are viewed to 

make sure that both tcpdump and the python script are initiated.  On the HMI, Wireshark 

is initialized on the Ethernet port to capture the network traffic to and from the emulated 

PLC and Allen Bradley Devices.  Nmap is also initialized on the HMI.  An Intense Scan 

including all TCP ports is done against each of the devices listed above.  After the Nmap 

scan has completed Wireshark is stopped.  The Wireshark and Nmap captures are saved 

for analysis.  After the scan of the emulated PLC an SSH session is initialized to the 

emulated PLC and the pcap created from tcpdump is retrieved.  The syslog on the logging 

machine is also saved.  Another scan of the Allen Bradley devices is also accomplished to 

run the OS detection scan against just the ICS communication port and one closed port 
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(e.g. <IP address> -O -p 44818-44819).  The emulated PLC does not currently implement 

a web server so the second Nmap scan provides a closer representation of what the 

emulated PLC results should look like.  Future work includes implementation of a web 

server on the emulated PLC to provide a closer representation of modern PLCs. 

The Nmap scan on the emulated PLC is successful if only the ICS communication 

port, TCP port 502, appears to be open.  If the OS scan on the emulated PLC results are 

the same as that of the OS scan specifically targeting the open ICS communication port 

on the Allen Bradley devices then the test is considered successful.  The test is not 

successful if the OS on the emulated PLC is not the same as the Allen Bradley devices. 

3.3.2.2 MAC Address Resolution Test Case 

MAC Address Resolution is a common fingerprinting technique common to ICS 

field devices.  The emulated PLC is tested to verify that the MAC address resolves to a 

known ICS vendor.  The Wireshark traffic from both the Modbus Traffic Emulation test 

cases and the Nmap scan are examined to see if the MAC address resolves to a known 

ICS vendor.  The results of the Nmap scan are also examined to see if the MAC address 

resolves to a known ICS vendor. 

The MAC Address Resolution succeeds if the MAC addresses in all the 

Wireshark captures are the same and resolve to a known ICS vendor.  The MAC address 

must also resolve in the Nmap scan to succeed.  The MAC Address Resolution fails if in 

any of the captures the MAC address does not indicate a known ICS vendor MAC 

address. 
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3.3.2.3 Banner Grabbing Test Case 

Banner Grabbing is another fingerprinting technique common to ICS field 

devices.  This test case tests that the emulated PLC can respond to banner grabbing 

request on the Modbus TCP port.  The following states how to configure the emulated 

PLC for this test case.  First the emulated PLC is connected to the switch and the logging 

device.  After the device is turned on and both Ethernet NICs have been initialized then 

SSH is initiated from the logging computer to the emulated PLC.  The command 

‘ifconfig’ is run to determine the IP address of the emulated PLC.  Next, the command 

‘ps -ef’ is run and then the results are viewed to make sure that both tcpdump and the 

python script have initiated.  On the HMI, Wireshark is started on the Ethernet port to 

capture the network traffic to and from the emulated PLC.  Triangle MicroWorks 

Protocol Test Harness is then started on the HMI.  The Modbus TCP command Device 

ID is then sent to banner grab the information from the emulated PLC.  This command 

helps to correctly identify a device because the response sends information such as the 

vender name and product name.  Note that this command is a Modbus command and 

therefore cannot be run against either of the Allen Bradley devices.  After the command 

has completed, Triangle MicroWorks and Wireshark are stopped.  The Wireshark capture 

is saved for analysis.  An SSH session is initialized to the emulated PLC and the .pcap 

created from tcpdump is retrieved.  The syslog on the logging machine is also saved.   

The banner grabbing on the emulated PLC is successful if Triangle MicroWorks 

is able to receive a valid response from the emulated PLC.  Successful emulation of this 

command gives another way that an attack can fingerprint the emulated PLC as an 
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operational PLC.  The test is not successful if the device does not respond in a manner 

that Triangle MicroWorks is expecting.  

3.3.3 Invalid Traffic Test Cases 

This test is used to make sure that when an invalid packet is received by the 

emulated PLC it responds in the same manner as an operational PLC.  This test 

incorporates the emulated PLC and both the Allen Bradley devices. 

The devices are configured as in Section 3.3.2.1 Port Scan.  The only difference is 

that Scapy is started on the HMI to allow for the creation of an invalid TCP packet to be 

sent to each of the devices.  Scapy sends an invalid SYN packet with a NULL TCP 

checksum and then waits for a response.  After 60 seconds Scapy then sends a valid SYN 

packet verifying that the device is responsive.  After Scapy has completed sending the 

packets Wireshark is stopped.  The Wireshark capture is saved for analysis.  After the 

invalid traffic to the emulated PLC has completed an SSH session is initialized to the 

emulated PLC and the .pcap created from tcpdump is retrieved.  The syslog is also saved 

for analysis. 

The invalid traffic test case on the emulated PLC is successful if the response 

from the emulated PLC matches that of the Allen Bradley devices.  The test is not 

successful if the device does not respond in a similar manner to that of the Allen Bradley 

devices.  This test is emulating a standard IT practice of fingerprinting a device through 

responses received to certain invalid packets. 

3.3.4 Logging Capabilities 

Logging on the emulated PLC is important to be able to capture any interaction 

that an attack may have with the emulated PLC.  The logging of the emulated PLC is 
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tested in the Modbus traffic emulation, port scan, banner grabbing and invalid traffic tests 

as described above.  For each of the tests the number of packets captured on the emulated 

PLC are compared to the number of packets captured on the HMI.  The syslog on the 

logging device is also checked for each test to see if each of the commands sent to the 

emulated PLC are correctly logged. 

The logging of the emulated PLC is successful if both of the following conditions 

are met: (1) the number of packets captured on the emulated PLC match the number of 

packets sent from the HMI and (2) each of the commands sent to the emulated PLC are 

correctly logged. 

3.3.5 Qualitative Evaluation 

A qualitative analysis is conducted through work with a member of the Air 

National Guard’s 262
nd

 Network Warfare Squadron.  The 262
nd

 is based at McChord Air 

Force Base outside Tacoma, Washington and attracts people from many tech companies 

such as Microsoft, Cisco Systems and Adobe Systems.  A member of this unit analyzed 

the emulated PLC for fingerprinting techniques.  The 262
nd

 does ICS assessments on Air 

Force networks which gives them the capability of comparing the emulated PLC to 

operational devices.   

The emulated PLC is provided to one of the members of the Air National Guard’s 

262
nd

.  The member uses their available testing environment and techniques for the 

evaluation.  The evaluation is considered successful if the member reports that the 

emulated PLC is not distinguishable from an operational device.  Note that specific 

techniques used to evaluate this device are not considered important; the goal is to see if 
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an experienced assessor determines the emulated PLC is consistent with an operational 

PLC. 

3.4 Methodology Summary 

 This chapter provided the methodology for evaluating the emulated PLC.  The 

Modbus traffic emulation of the emulated PLC is examined with: valid Modbus traffic, 

fingerprinting techniques and invalid traffic.  Modbus traffic is used to examine if the 

emulated PLC functionality is the same as that of an operational PLC.   Fingerprinting 

techniques are used to study the case of an attacker scanning the emulated PLC.  The 

invalid traffic is used to see if the emulated PLC is able to respond in the same manner as 

a PLC by other typical IT methods of fingerprinting.  These tests are all accomplished to 

simulate possible network traffic a device may receive when emulating a PLC.  During 

each of the tests, the logging capabilities are verified for capture on the emulated PLC as 

well as remote logging capabilities.  The qualitative analysis is conducted by an ICS 

security expert who is able to give an evaluation on how well the emulated PLC emulates 

an operational PLC. 
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IV. Analysis and Results 

 Results of this research are organized as the following: Section 4.1 discusses the 

development of the emulated PLC. Section 4.2 describes the emulated PLC initialization 

checks prior to running the test. Section 4.3 presents the results from the functionality 

checks with valid Modbus Traffic, fingerprinting techniques, invalid TCP traffic, logging 

capabilities and the qualitative evaluation given by a subject matter expert. Section 4.4 is 

the analysis of the results given in Section 4.3, and Section 4.5 summarizes all the results. 

4.1 Development of emulated PLC 

4.1.1 Architecture 

Device implementations for ICS field devices more closely resemble cell phones 

than traditional information technology platforms.  Indeed, there are myriad vendors, 

model numbers, configurations, chipsets and different operating systems/firmware for 

each associated device [36].  While the devices are quite unique in platform 

characteristics, PLCs that implement Modbus TCP conform to the RFC protocol 

specifications in order to enable inter-device communication.  Although the emulated 

PLC does not contain input/output functionality for analog and digital signals to control 

physical devices, it can be programmed to respond appropriately to Modbus 

communications.  For this research, the emulated PLC was programmed according to 

RFC specifications to incorporate common function codes identified in Chapter 3.   

The emulated PLC is incorporated into ICS operations similar to other PLC field 

devices.  Note that the emulated PLC can be readily modified to emulate various PLC 

vendors (e.g., Siemens, Omron, and Allen-Bradley).  PLC identification is determined by 
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MAC addresses assigned to the various vendors.  The emulated PLC can be set to 

respond with any MAC address such that if correlated, it resembles the associated vendor 

product.  Additionally, the emulated PLC incorporates an out-of-band logging capability 

to record and report on specified criteria (e.g., unexpected traffic patterns, attempt to 

read/write unauthorized parameters and unexpected function codes). 

4.1.2 Implementation Details 

The program that provides the emulation capability was developed using Python 

with the Scapy 2.2.0 module.  Additionally, tcpdump is implemented on the ICS-facing 

NIC to allow capture of network traffic and storage as pcap files.  Syslog is used to send 

alerts and traffic files to a remote logging device via the other NIC.  The emulated PLC is 

readily configurable to respond to operating parameters in the same manner as an 

operational PLC.  The emulated PLC maintains system state in the event that function 

parameters are modified.  For example, if a message is received to write to a single coil 

(e.g., close a valve) and a subsequent message requests a read for the same parameter 

(e.g., status of the valve), the emulation device will respond with the updated state (e.g., 

valve closed).  Additionally, if an unrecognized function code or transaction message is 

received, the emulated PLC responds with an appropriate unrecognized error code.  If 

traffic is received on a port other than the designated TCP port 502 (Modbus), the PLC 

emulation device responds with a simple RESET ACK; however, the action generates a 

logging event.  Such traffic may be indicative of a port scan. 

For logging purposes, any received traffic that is not consistent with pre-defined 

parameters generates an event.  Consider, for example, the configuration of the PLC 

emulation device to continually respond to read requests for various defined parameters. 
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The PLC emulation device is expecting to receive the message traffic precisely as 

specified; any traffic not conforming generates an event.  Alternatively, the PLC 

emulation device can be deployed to a segment without a specific configuration for 

expected message traffic.  In this scenario, the PLC emulation device serves as a 

traditional honeypot and can indicate attempts to scan the network for ICS devices. 

Emulating a traditional PLC for open ports is accomplished by implementing 

iptables to make all ports appear closed on the ICS-facing NIC, with the exception of port 

502.  The Scapy module generates packets from the PLC emulation device to craft 

messages consistent with Modbus standards.  Additionally, a startup script is included 

that changes the MAC address to a specified value to correspond with a PLC vendor.  

Banner grabbing is implemented for the Modbus TCP communication service emulated 

on TCP port 502.  For purposes of this research, replicating additional services to respond 

to banner grabbing or other identified fingerprinting techniques are not implemented. 

Future work for the PLC emulation device consists of developing such functionality. 

4.2 Emulated PLC Initialization Checks 

 Prior to sending traffic to the devices in the test cases, the emulated PLC is 

checked to validate that the necessary services are running.  The services required are as 

follows:  

 PLC emulation (canary.py) 

 Tcpdump  

 Network communications 

 Syslog 

The detailed steps for verifying services are as follows: 



 

46 

1. SSH connection is initiated from the logging device to the emulated PLC 

a. Run the command ps-ef 

i. Check the results and verify python and tcpdump are running 

2. A command window is opened on the HMI 

a. The command ping <IP address of emulated PLC> is initiated 

b. The command window is checked for a valid response 

c. The syslog on the logging device is then checked to confirm that the 

packet is recorded 

 For each test the emulated PLC successfully initialized and the processes 

correctly started. 

4.3 Results 

4.3.1 Functionality Test through Modbus Traffic Emulation 

The tests from the two software programs emulating Modbus TCP traffic 

demonstrate the emulated PLC conforms to RFC standards.  Table 4.1 shows that for 

each software package all six commands initiated by the test harness received valid 

responses. 

Table 4.1: Modbus TCP traffic tests. 

Software Messages Sent Valid Responses Invalid Responses 

Triangle MicroWorks 

Protocol Test Harness 
6 6 0 

Modbus Poll 6 6 0 
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The findings indicate that the responses of the emulated PLC conform to RFC 

standards for Modbus TCP.   Figure 4.1 shows the read coil response from the emulated 

PLC correctly dissected in Wireshark, indicating a valid response.  The correct dissection 

of the response in Wireshark further demonstrates that the response adheres to the RFC 

standard for Modbus TCP.  Figure 4.2 shows the statistics on Triangle MicroWorks 

denoting that all six responses are valid.  The Responses Received field identifies when 

the response is valid and conforms to RFC standards.  Requests Failed, Requests Timed 

Out, and Channel Errors indicate erroneous or invalid responses. 

 

Figure 4.2: Triangle MicroWorks response statistics. 

 

Figure 4.1: Read coil response Wireshark dissection. 
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The other tested functionality is the ability of the emulated PLC to maintain 

appropriate state.    Figure 4.3 shows the request and response of the traffic dissected in 

Triangle MicroWorks.  The first read shows that coil 1 is set to off (0).  The coil is then 

turned on (ff) and the status displays on (1) for the subsequent read.  The findings 

demonstrate the ability of the emulated PLC to update and maintain state. 

 The emulated PLC provides functionality for six Modbus commands according to 

the RFC standards.  The test used to evaluate the functionality of the six commands is 

consistent with industry standards used to evaluate an operational PLC before deploying 

to the field.  While only six commands are implemented in this iteration, incorporating 

additional commands is trivial. 

Figure 4.3: Read, Write, Read dissected in Triangle MicroWorks 
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4.3.2 Fingerprinting Techniques 

4.3.2.1 Port Scan 

The port scan using the software package Nmap identifies open ports and 

provides OS detection.  When the emulated PLC is scanned with the intense scan all TCP 

ports the results show TCP port 502 open and all other ports closed.  The results are 

indicative of a PLC device communicating Modbus on port 502.  Note that the Allen 

Bradley devices use Ethernet/IP as opposed to Modbus for ICS communication.  Scan 

results for both Allen Bradley devices similarly show a native ICS communication 

protocol Ethernet/IP on port 44818.   

For baseline purposes, an Nmap scan was performed against the Overo Gumstix 

with the Linux image and resulted in ports 22 and 111 open and an OS detection result of 

Tomato 1.27 (Linux 2.4.20).  The Overo Gumstix was then configured to the emulated 

PLC.  The OS detection results is ‘none’ because the results failed to match any operating 

systems in the Nmap OS database.  A similar scan for the Allen Bradley devices also 

resulted in ‘none’.  The scanning methodology is indicative of an attacker scanning a 

device to identify open communication ports and attempting to identify the OS to 

fingerprint a device prior to launching an exploit.  The findings demonstrate that an 

attacker scanning the emulated PLC with Nmap would infer the device to be an actual 

PLC due to the manner the emulated PLC responds consistent with a PLC 

communicating Modbus. 

4.3.2.2 MAC Address Resolution  

The MAC Address resolution test demonstrates the ability to mimic manufacturer 

device identifiers.  Figure 4.4 shows that the MAC address of the emulated PLC resolves 
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to a Siemens PLC when examined via Wireshark.  This is consistent with all traffic 

captures associated with the emulated PLC; in each test the MAC address appropriately 

resolved to a Siemens PLC. 

During the Nmap scan of the emulated PLC, the MAC address resolution, shown 

in Figure 4.5, also resolves to a Siemens Automation device.  With the OS scan coming 

back as negative an attacker examining the MAC address resolution and open ports likely 

concludes the device is indeed a PLC. 

 

Figure 4.5: Nmap MAC address resolution. 

4.3.2.3 Banner Grabbing 

The next common fingerprinting technique in ICS field devices is banner 

grabbing.  The Modbus TCP function code for Encapsulated Interface Transport-Device 

ID x43 x14, allows a user to retrieve information about a PLC, such as the vendor name 

and product code.  For the banner grabbing test, Triangle MicroWorks Protocol Test 

Harness initiates the protocol messages.  Figure 4.6 demonstrates a successful response 

from the emulated PLC conforming to the RFC standard.  Figure 4.7 provides the values 

in detail for each of the three objects returned in response to the command.  Device object 

Figure 4.4: Read coil response Wireshark dissection. 
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zero is the vendor name, object 1 is the product code and object 2 is the major minor 

revision.  The Conformity Level means that the information is basic information about 

the PLC and the next object ID is only used if the information cannot be encapsulated in 

one packet.  The emulated PLC for the banner grabbing test is configured to appear to be 

an Allen Bradley, showing the adaptability of the emulated PLC to emulate multiple 

device types.  The results show the device is an Allen Bradley MicroLogix 1500 V1.12.1.   

 

Figure 4.6: Triangle MicroWorks response statistics for banner grab. 

 

Figure 4.7: Response to banner grab in Triangle MicroWorks. 

 Note that the banner grabbing is only tested for the Modbus protocol implementation.  

As services are added to the emulated PLC (e.g., web servers), the device requires 

evaluation of banner grabbing techniques for the service added. 
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4.3.3 Invalid ICS Traffic 

The emulated PLC was evaluated for the ability to handle invalid ICS traffic.  A 

SYN packet with an invalid checksum was sent to each of the PLC devices.  As 

demonstrated in Table 4.2, each device appropriately dropped the invalid packet.  

Appendix C.3 provides screen captures of the traffic in Wireshark for each device.  Note 

that there is no response to any of the request packets.  The second packet in each capture 

is a valid SYN packet followed by a response from each of the PLCs.  The results 

demonstrate that the device is functioning and checks for valid TCP checksums. 

Table 4.2: Response to valid/invalid TCP checksum. 

Device 
Response to Invalid 

Checksum 

Response to Valid 

Checksum 

Emulated PLC No Yes 

Allen Bradley ControlLogix 

1739 
No Yes 

Allen Bradley MicroLogix 

1100 
No Yes 

 

4.3.4 Logging Capabilities 

The logging capability is designed to record any interaction with the emulated 

PLC.  The traffic captured on the emulated PLC using tcpdump and logged on a remote 

logging device.  During the valid Modbus TCP traffic, the connection with the emulated 

PLC is logged, all six commands are logged and the connection tear down with the 

emulated PLC is logged.  Figure 4.8 shows the syslog entry connection and commands 

from the Triangle MicroWorks functionality test. 
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Figure 4.8: Syslog entries of interactions with the emulated PLC. 

Appendix C.1 provides screenshots of all the packets captured for the HMI and on the 

emulated PLC.  Both figures show that there are 23 packets transmitted during the test 

case for both Triangle MicroWorks and Modbus Poll, demonstrating the ability to 

correctly log the interactions. 

 During the state functionality test, the emulated PLC and the HMI captured 14 

packets.  Appendix C.1 provides screenshots of both Wireshark captures displaying the 

packets communicated across the channel.  Figure 4.9 below shows that the logging 

device is able to log all the traffic sent to it during the test.  The connection and tear 

down, both the read commands, and the write command are all logged. 

Logging is also examined during the port scan against the emulated device.  The 

number of packets captured on the emulated PLC is compared to the number of packets 

captured on the HMI.  During the intense scan of the emulated PLC, tcpdump fails to log 

all the packets.  The amount of packets that are captured on the HMI is 147,295 packets, 

compared to only 44,838 packets captured on the emulated PLC.  The device is able to 

respond to all operational traffic; however, it is not able to log all messages.  The 

tcpdump records packets for approximately eleven seconds then ceases to log packets for 

approximately fifteen minutes while it responds to the network traffic load.  While not 

Figure 4.9: Syslog entries from read, write, read test. 
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every packet was checked for a response during the test a look through the Wireshark 

capture on the HMI appeared as though the emulated PLC is able to respond to all the 

packets being sent to the device.  It appears as though the CPU cycles during this period 

of time are all allocated for the response to network traffic and the logging is not given 

any of these cycles.  This is a shortfall in that an attack could flood the device and exploit 

the system without the events being logged.  The syslog is also checked to see if the 

connections to the device are logged.  The syslog, much like that of tcpdump, fails to log 

all connections and packets to the device.  There are only 165 packets captured in the 

syslog and one connection to the emulated PLC recorded. 

Logging was also evaluated in the banner grabbing test.  The traffic comparison 

between the number of packets captured on the HMI and the number of packets captured 

on the emulated PLC (8 packets) are equal for the command sent from Triangle 

MicroWorks.  The Wireshark captures from the HMI and emulated PLC are shown in 

Appendix C.3. 

The verification that interactions with the emulated PLC are logged on a remote 

device is also evaluated.  The connection with the emulated PLC, the request command 

and the connection tear down are all identified and logged.  Figure 4.10 shows the 

connection and command sent from Triangle MicroWorks as logged in the syslog. 

 

Figure 4.10: Syslog entries for banner grab. 

The invalid traffic logging is also evaluated to see if the emulated PLC correctly 

logged all interactions.  The number of packets captured on the emulated PLC correlates 

with the number of packets captured on the HMI (4 packets).  Appendix C.4 provides 
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screenshots of the captured traffic.  The verification that any interaction with the 

emulated PLC is logged on a remote logging device is checked.  In this case, the failed 

connection with the emulated PLC is logged and the successful completion of the SYN 

with the valid TCP checksum is also shown in the logs. Figure 4.11 below shows the 

connection and command sent from Triangle MicroWorks as logged in the syslog. 

 

Figure 4.11: Syslog entry from invalid TCP checksum. 

4.3.5 Qualitative Evaluation 

An ICS Subject Matter Expert (SME) from the 262nd Air National Guard unit 

evaluated the emulated PLC using assessment techniques.  The emulated PLC responded 

in a manner consistent with an operational PLC during evaluation.  The individual stated 

that based on the Modbus characteristics, operational parameters and interactive sessions, 

the emulated PLC would have been considered an operational PLC typically encountered 

during an ICS assessment.  The findings indicate that an attacker attempting to exploit a 

PLC target would not readily discern the differences between the emulated PLC and an 

operational PLC.  The ICS SME from the 262nd recommended inclusion of a web server 

in the next iteration, as this is the service most used for remote access and exploitation by 

malicious actors. 

4.4 Analysis 

 The emulated PLC successfully emulates the six Modbus TCP commands based 

on the RFC as tested with Triangle MicroWorks Protocol Test Harness.  The emulated 

PLC also maintains system state as expected in an operational PLC.  The emulated PLC 
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is responsive as an operational PLC instead of a Linux machine to three of the four 

fingerprinting methods common to ICS.  The MAC address of the emulated PLC is easily 

configured to appear as a Siemens Automation PLC.  Port scans for the PLC demonstrate 

Modbus TCP server process and the OS detection is not able to successfully fingerprint 

the device.  The emulated PLC is able to successfully respond to banner grabbing 

techniques used to fingerprint a device running a Modbus server.  The emulated PLC also 

successfully responds to invalid traffic in the same manner as other PLCs.  Finally, 

evaluation of the emulated PLC by a subject matter expert demonstrates the ability to 

appear as a legitimate operational PLC to an external individual using ICS assessment 

techniques. 

 The emulation of the PLC is successful; however, a shortfall is identified with the 

logging functionality.  The logging functionality failed to properly log all traffic during 

intense port scan.  The logging is able to catch up before the scan is finished, however, 

that could miss valuable information during an attack.   The logging capability requires 

further evaluation.  The other services during the intense traffic load also need to be 

examined to evaluate if the performance of other services is degraded during this time.  

Regardless, the demonstrated ability is an improvement over current logging capabilities 

at the field device level. 

4.5 Results Summary 

The emulated PLC successfully passes fingerprinting techniques used to classify 

the device as a PLC.  The emulated PLC successfully responds to Modbus TCP traffic 

and maintains the proper system state.  The device also responds to invalid traffic in the 
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same manner as legitimate PLCs.  Although interaction with the emulated PLC was 

appropriately logged, further evaluation is required to determine traffic and bandwidth 

limits.  



 

58 

V.  Conclusions and Recommendations 

5.1 Conclusions  

This research introduces a novel approach to help secure ICS.  The PLC 

emulation device offers many capabilities associated with employment in the operational 

ICS environment.  The device helps identify reconnaissance and exploitation attempts 

against an operational ICS.  During scanning, an attacker attempts to identify available 

systems on the network.  Once identified, an attacker may attempt to manipulate 

parameters to alter system functionality.  In each instance, the PLC emulation device 

identifies the attempted actions and logs the events. 

In addition to identifying attempted exploitation, the PLC emulation device offers 

situational awareness.  Often times, asset owners have only awareness of network traffic 

and operating characteristics as reported at the HMI.  The PLC emulation device 

characterizes network traffic patterns and identifies erroneous communications.  Indeed, 

the device helps provide holistic awareness of the system and can be used as an early 

detection against propagating malware that is targeting ICS.  Finally, the logging 

capability provides insight into attack characteristics. By deploying PLC emulation 

devices across a wide range of ICS, logging can be evaluated to determine attacker tactics 

and techniques. 

Although the PLC emulation device offers security protections against an external 

attacker and malware, it is important to note that it may not be as effective against trusted 

insiders.  Because insiders have explicit knowledge of ICS operations, awareness that the 

PLC emulation device is employed may result in the attacker avoiding communication 

with the device.  Regardless, the approach demonstrates utility for increasing the security 
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posture for ICS.  Indeed, use of the emulated PLC device affords a capability that is 

inexpensive, configurable, portable, and offers event logging. 

5.2 Future Work 

5.2.1 Further Protocol Development 

Currently the emulated PLC only emulates a portion of the Modbus TCP protocol.  

Follow on work includes development of the additional functions in the Modbus TCP 

standard to create a more robust solution.  Further development also includes adding 

additional ICS communication protocols such as DNP3 and EtherNet/IP to make the 

device. 

5.2.2 Levels of Implementation 

Follow on work for the emulated PLC includes expanding the current level of 

services offered by the device.  Currently the device successfully emulates the protocol 

level and application level for Modbus TCP.  The stack level is partially emulated 

through the use of iptables and configuring responses in Scapy to respond in a similar 

manner to ICS devices.  Future work is to fully implement the stack level of a PLC.  

Scapy can be used to fully implement a response for all iterations of packets.  Working 

on additional application level programs such as a web server allow for enhanced PLC 

emulation. 

5.2.3 Response Time  

Future work requires comparison of the response time for the current emulated 

PLC to that of a real PLC.  With the knowledge of honeypots in the IT sector, response 
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time is used to determine if an attacker is communicating with a legitimate computer or if 

it is a honeypot.   

5.2.4 Traffic Loss 

During this research there was traffic that failed to be logged during heavy traffic 

loads.  Determining the reason for traffic loss and a solution to better handle the traffic 

when it increases is important.  Successfully capturing all packets is needed to help 

determine the attack characteristics in ICS networks. 

5.2.5 Ladder Logic and Firmware Implementation 

The implementation of ladder logic allows enhanced emulation of a PLC.  If 

ladder logic is implemented, the devices the values on the device would be constantly 

changing to help trick an attacker.  If an attacker was scanning the network waiting to see 

how the values are changing then the device could emulate the fluctuation of a pressure 

sensor reading changing frequently.    

Likewise is the ability to allow firmware updates to a device.  While it would not 

update any actual firmware, emulating the traffic to and from the emulated PLC would 

make an attacker assume that he is interacting with a real PLC.  Once the firmware 

update has completed, the emulation will then save that state so if later the same attacker 

attempted to scan for current firmware it would appear as though the firmware is the new 

version. 

5.2.6 Serial Implementation 

Implementing an emulated device that communicates over serial lines instead of 

Ethernet TCP/IP cables would be the next capture interface.  Many devices still 

communicate over serial lines and adding the capability enables the device to broaden the 
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array of devices that it can emulate.  Much of the communication that is discussed in 

current ICS systems is the communication over Ethernet because it is readily accessible.  

Serial communication would have to communicate through an HMI that could be 

configured as a honeypot. 

5.2.7 Ethernet Header Manufacturing Tags 

Ethernet header manufacturing tags are another way to commonly fingerprint an 

ICS device and this needs to be evaluated as future work.  This also can be implemented 

with the use of Scapy easily once the knowledge of the header tags in acquired.   

5.3 Concluding Remarks 

 The primary goal of this research is to develop an inexpensive, configurable and 

portable emulation device that contains logging capabilities.  In order to properly emulate 

a PLC, the emulated PLC device avoids common fingerprinting techniques specific to 

ICS devices.  This research develops such a device that is able to be expanded upon and 

deployed to a live environment to better characterize and identify attacks on ICS 

networks. 
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Appendix A: Setting Up Emulated PLC 

 

I. BUILDING OVERO OPEN EMBEDDED IMAGE 
Guide: http://gumstix.org/software-development/open-embedded/61-using-the-open-

embedded-build-system.html 

1) Build a new machine with the Ubuntu 10.10 x86 ISO file to act as the 

development laptop. 

a. http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso 

2) Once booted, use the Update Manager to update the default packages.  Do not 

upgrade to Ubuntu 11.04 or other versions. 

3) Open the synaptic package manager and select the following packages for install: 

a. git 

b. subversion 

c. gcc 

d. build-essential 

e. help2man 

f. diffstat 

g. texi2html 

h. texinfo 

i. libncurses5-dev 

j. cvs 

k. gawk 

l. python2.7-dev 

m. python-pysqlite2 

n. unzip 

o. chrpath 

p. ccache 

4) sudo dpkg-reconfigure dash 

a. Answer No when asked whether you want to install dash as /bin/sh. 

5) mkdir -p ~/overo-oe 

6) cd ~/overo-oe 

7) git clone git://gitorious.org/gumstix-oe/mainline.git org.openembedded.dev 

8) cd org.openembedded.dev 

9) git checkout --track -b overo-2011.03 origin/overo-2011.03 

10) cd ~/overo-oe 

11)  git clone git://git.openembedded.org/bitbake bitbake 

12) cd bitbake 

13) git checkout 1.12.0 

14) cd ~/overo-oe 

15) cp -r org.openembedded.dev/contrib/gumstix/build . 

16) cp ~/.bashrc ~/bashrc.bak 

17) cat ~/overo-oe/build/profile >> ~/.bashrc 

18) Close the Terminal window and open a new one. 

19) gedit ~/overo-oe/org.openembedded.dev/recipes/images/omap3-console-image.bb 

http://gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html
http://gumstix.org/software-development/open-embedded/61-using-the-open-embedded-build-system.html
http://releases.ubuntu.com/10.10/ubuntu-10.10-desktop-i386.iso
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a. Add iptables to the TOOLS_INSTALL section 

b. Save and close the window 

20) bitbake omap3-console-image 

21) The Overo file system is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/omap3-console-image-overo.tar.bz2 

22) The Overo OE Linux Kernel is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/uImage-overo.bin 

 

II. RECONFIGURING THE OVERO KERNEL TO INCLUDE IPTABLES 

SUPPORT 

Guide: http://gumstix.8.n6.nabble.com/iptables-on-Overo-td663707.html 

1) On the development laptop: 

2) cd ~/overo-oe 

3) mkdir -p ./user.collection/recipes 

4) cp -r ./org.openembedded.dev/recipes/linux /home/<user>/overo-

oe/user.collection/recipes 

a. (bitbake looks at user.collection first.  org.embedded.dev holds the 

original copy) 

5) cd ~/overo-oe/tmp/work/overo-angstrom-linux-gnueabi/linux-omap3<kernel 

version>/git 

6) make menuconfig ARCH=arm 

a.  Networking Support 

     Networking Options 

    [*] Network Packet Filtering (netfilter) 

     Network Packet Filtering (netfilter) 

      Core Netfilter Configuration 

     ENABLE [M] all options in this menu 

      IP: Netfilter Configuration 

     [*] proc/sysctl compatibility with old 

connection tracking 

     ENABLE [M] all other menu options 

     IPv6: Netfilter Configuration 

     ENABLE [M] all options in this menu 

b. Exit 

c. Save: Yes 

7) ls –al 

a. Check that date was made today 

8) cp ./.config ~/overo-oe/user.collection/recipes/linux/linux-omap3/overo/defconfig 

9) cd ~/overo 

10) bitbake –c clean linux-omap3 

11) bitbake –c build linux-omap3 

12) The Overo OE Linux Kernel is built at: ~/overo-

oe/tmp/deploy/glibc/images/overo/uImage-overo.bin 

 

http://gumstix.8.n6.nabble.com/iptables-on-Overo-td663707.html
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III. PARTITIONING BOOTABLE SD CARD FOR OVERO IMAGE 

Guide: http://gumstix.org/create-a-bootable-microsd-card.html 

Guide: http://gumstix.org/how-to/70-writing-images-to-flash.html 

1) df 

2) umount /media/… 

3) umount /… 

 

 

IV. DEPLOYING OVERO IMAGE 

1) On the development laptop: 

2) Delete the current file structure, if any, on the EXT3 partition of the micro SD 

card 

a. sudo nautilus 

b. Edit > Preferences > Behavior > Check Include a Delete command that 

bypasses Trash 

c. Select rootfs 

d.  Select all files > Right Click > Delete 

3) Copy the contents of ~/overo-oe/tmp/deploy/glibc/images/overo/omap3-console-

image-overo.tar.bz2 into the rootfs partition of the micro SD card. 

4) On the micro SD card FAT partition: 

a. Delete uImage 

b. Copy uImage-<kernel version>-overo.bin into / 

c. Rename uImage-<kernel version>-overo.bin to uImage 

 

V. BOOTING OVERO IMAGE CONSOLE 

1) Power off the Overo board. 

2) Insert the newly created micro SD card into the micro SD slot of the Overo board. 

3) Connect a USB cable between the “Console” mini USB B port on the Overo 

board and the development laptop with ckermit installed. 

4) On the development laptop create a file called overo_serial.cfg 

set line /dev/ttyUSB0 (Note: 0 might changed) 

set flow-control none 

set carrier-watch off 

set speed 115200 

set reliable 

fast 

set prefixing all 

set file type bin 

set rec pack 4096 

set send pack 4096 

set window 5 

 connect 

5) Open a terminal and type: 

a. kermit 

http://gumstix.org/create-a-bootable-microsd-card.html
http://gumstix.org/how-to/70-writing-images-to-flash.html
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i. take overo_serial.cfg 

6) Power on the Overo board.  You should see the boot sequence displayed on the 

terminal.   

7) Break the boot sequence when prompted then type: 

a. nand erase 240000 20000 

b. reset 

8) Enter “root” as the username to log in. 

9) To exit kermit:  

a. ctrl-/-c 

b. Type: exit 

 

VI. COMPILING SCAPY FOR OVERO IMAGE 
1) On the development laptop  

a. Go to www.secdev.org/projects/scapy 

b. Scroll down to the section labeled Download 

c. Download Scapy’s latest revision 

d. Unzip the folder to the desktop 

e. scp –r <foldername> <IP address of gumstix>:/home/root 

f. You will also want to move over the canary.py script 

g. scp –r canary.py <IP address if gumstix>:/home/root 

2) On the gumstix now type the following commands 

a. opkg update 

b. opkg install python-core 

c. opkg install python-modules 

d. mkdir /usr/include/python2.6 

3) Go back to the development laptop  

a. sudo scp /usr/include/python2.6/pyconfig.h <IP 

address>:/usr/include/python2.6 

4) On the gumstix 

a. cd <foldername of scapy files> 

b. python setup.py install 

 

VII. COMPILING TCPDUMP FOR OVERO IMAGE 
1) On the development laptop: 

a. bitbake tcpdump 

2) Packages will be built in: /overo-oe/tmp/deploy/glibc/ipk/armv7a 

3) Copy the packages onto the Overo EXT3 partition 

a. sudo scp ./tcpdump_<version number>.ipk <overo IP address>:/home/root 

4) On the Overo console, install the package 

a. opkg install ./tcpdump_<version number>.ipk 

 

VIII. COMPILING BITSTRING FOR OVERO IMAGE 

1) On the development laptop  

a. Go to http://code.google.com/p/python-bitstring/downloads/list 

b. Download bitstring latest revision 

http://www.secdev.org/projects/scapy
http://code.google.com/p/python-bitstring/downloads/list
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c. Unzip the folder to the desktop 

d. scp –r <foldername> <IP address of gumstix>:/home/root 

2) On the gumstix 

a. cd <foldername of bitstring files> 

b. python setup.py install 

 

IX. REMOVING UNWANTED PACKAGES 

1) update-rc.d –f ntpd remove 

2) update-rc.d –f avahi-daemon remove 

3) update-rc.d –f portmap remove 

 

X. CONFIGURING STARTUP SCRIPT 

1) Create a file in the /etc/init.d directory called canary.sh with the contents below 

#!/bin/bash 

 

/etc/init.d/networking start 

 

ifconfig eth0 hw ether 00:0e:8c:bb:1f:56 

ifconfig eth0 up 

dhclient eth0 

 

ifconfig eth1 up 

ifconfig eth1 172.16.1.10 

 

/etc/init.d/sshd start 

 

iptables -A OUTPUT -p tcp --sport 502 -j DROP  

iptables -A INPUT -p tcp --sport 502 -j ACCEPT 

iptables -A INPUT -j DROP -p tcp --sport 22 

iptables -A INPUT -j DROP -p tcp --sport 111 

iptables -A INPUT -j LOG --log-level 6 -m pkttype --pkt-type host -i eth0  

iptables -A INPUT -j REJECT --reject-with tcp-reset -i eth0 

iptables -A FORWARD -j REJECT -i eth0 

 

nohup tcpdump -s 0 -i eth0 -C 10 -w /tmp/capture.pcap & 

 

nohup python /home/root/canary.py & 

 

2) update-rc.d canary.sh defaults 100 

 

X. CONFIGURING SSH TO RUN ON ETH1 ONLY 

1) cd /etc/ssh 

2) vi sshd_config 

a. Add the lines (These lines may be commented and you just need to 

uncomment them.) 
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i. Port 22 

ii. AddressFamily inet 

iii. ListenAddress 172.16.1.10 

b. Restart ssh (/etc/init.d/sshd restart) 

 

XI. CONFIGURING THE OVERO BOARD TO WORK WITH THE TOBI DUO 

1) This is only needed if you have used the Tobi board to set up the Overo Board 

2) Place the Overo Board on the Tobi Duo Expansion Board and power on the 

board. 

3) Once the board has come online (Detected by the blue light on the CPU stops 

flashing) unplug the board and place the board back on the Tobi Expansion board. 

4) Turn on the Overo  

5) vi /etc/udev/rules.d/70-persistant-net.rules 

6) There should now be three net device () lines in this file eth0 – eth2. 

7) Edit the eth1 line so that NAME=”eth0” 

8) Edit the eth2 line so that NAME=”eth1” 

9) If you restart the Overo with the Tobi-Duo extension you should now be able to 

SSH to 172.16.1.10. 

 

 

XII. CONFIGURING THE SYSLOG SERVER 

1) Edit the /etc/init.d/sysklogd file. 

2) Find the line SYSLOGD=“” and replace it with SYSLOGD=”-rm 0” 

3) You will also need to edit the /etc/syslog.conf file. 

4) There is a line that starts with *.=info;…… -/var/log/messages 

a. After *.=info; add kern.!=info; 

5) After this line also add in the line kern.=info /var/log/canary.log 

6) Restart the syslog service 

a. /etc/init.d/syslog restart 

 

XIII. CONFIGURING SYSLOG ON THE GUMSTIX 

1) Edit the file /etc/syslog-ng.conf 

2) In the destination section add in the following line. 

a. Destination logging {udp(“172.16.1.11” port(514));}; 

3) Further down in the log section add the following line. 

a. log { source(src); destination(logging); }; 

4) Restart the syslog service 

a. /etc/init.d/syslog restart 
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Appendix B: Canary.py code 

#! /usr/bin/python 

 

### Dustin Berman 

### AFIT/ENG 

### Masters of Cyber Operations, June 2012 

 

### File Information 

### canary.py 

### Emulates a PLC with the following commands: Read Coil, Read Discrete Inputs, Read Holding 

Registers, Read Input Registers, Write Single Coil, Write Single Register 

### This will also log any connections to the syslog 

 

# Imports 

import logging, platform, random 

import syslog 

from struct import * 

from bitstring import BitArray 

 

# Designed with Scapy 2.2.0 

logging.getLogger("scapy").setLevel(1) 

from scapy.all import * 

 

# Display the version of Python and Scapy being used 

print "Python %s\tScapy %s" % (platform.python_version(), conf.version) 

 

#Global Variables 

numcoils = 100 

numdinputs = 100 

numinputregisters = 100 

numholdregisters = 100 

coil = ['0']*numcoils 

dinputs = ['0']*numdinputs 

inputregister = ['\x00\x00']*numinputregisters 

holdregister = ['\x00\x00']*numholdregisters 

vendorname = "Allen Bradley" 

productcode = "Micrologix 1500" 

majorminorrevision = "V1.12.1" 

ipid = random.randint(1,65535) 

 

# Dictionaries 

# Need to add in all function codes here 

function_code_enum = {1:"Read Coil", 2:"Read Discrete Inputs", 3:"Read Holding Registers", 4:"Read 

Input Registers", 5:"Write Single Coil", 6:"Write Single Register", 43:"Encapsulated Interface Transport"}  

function_code = {"Read Coil":1, "Read Discrete Inputs":2, "Read Holding Registers":3, "Read Input 

Registers":4, "Write Single Coil":5, "Write Single Register":6, "Encapsulated Interface Transport":43} 

 

# Modbus Header 

class Modbus(Packet): 

 name = "Modbus" 

 fields_desc = [ShortField("transaction", 0), 

  ShortField("protocol", 0), 

  ShortField("length", 0), 
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  ByteField("unit", 0), 

  ByteEnumField("function", 1, function_code_enum) 

  ] 

 

 # This will determine how to dissect the rest of the packet 

 def guess_payload_class(self, payload): 

  if self.function == function_code['Read Coil']: 

   return ReadCoil 

  elif self.function == function_code['Read Discrete Inputs']: 

   return ReadDiscreteInputs 

  elif self.function == function_code['Read Holding Registers']: 

   return ReadHoldingRegisters 

  elif self.function == function_code['Read Input Registers']: 

   return ReadInputRegisters 

  elif self.function == function_code['Write Single Coil']: 

   return WriteSingleCoil 

  elif self.function == function_code['Write Single Register']: 

   return WriteSingleRegister 

  elif self.function == function_code['Encapsulated Interface Transport']: 

   return EncapsulatedInterfaceRequest 

  else: 

   return Packet.guess_payload_class(self,payload) 

 

# Read Coil Payload 

class ReadCoil(Packet): 

 name= "ReadCoil" 

 fields_desc = [ShortField("startcoil", 0), 

  ShortField("quantitycoils", 0) 

  ] 

 

# Read Coil Response Payload 

class ReadCoilResponse(Packet): 

 name= "ReadCoilResponse" 

 fields_desc = [ByteField("bytecount", 0), 

  StrField("status", "") 

  ] 

 

# Read Discrete Inputs Payload 

class ReadDiscreteInputs(Packet): 

 name= "ReadDiscreteInputs" 

 fields_desc = [ShortField("startinput", 0), 

  ShortField("quantityinputs", 0) 

  ] 

 

# Read Discrete Inputs Response Payloads 

class ReadDiscreteInputsResponse(Packet): 

 name= "ReadDiscreteInputsResponse" 

 fields_desc = [ByteField("bytecount", 0), 

  StrField("status", "") 

  ] 

 

# Read Holding Registers Payload 

class ReadHoldingRegisters(Packet): 

 name= "ReadHoldingRegisters" 
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 fields_desc = [ShortField("startaddress", 0), 

  ShortField("quantityregs", 0) 

  ] 

 

# Read Holding Registers Response Payload 

class ReadHoldingRegistersResponse(Packet): 

 name= "ReadHoldingRegistersResponse" 

 fields_desc = [ByteField("bytecount", 0), 

  StrField("status", "") 

  ] 

 

# Read Input Registers Payload 

class ReadInputRegisters(Packet): 

 name= "ReadInputRegisters" 

 fields_desc = [ShortField("startaddress", 0), 

  ShortField("quantityregs", 0) 

  ] 

 

# Read Input Registers Response Payload 

class ReadInputRegistersResponse(Packet): 

 name= "ReadHoldingRegistersResponse" 

 fields_desc = [ByteField("bytecount", 0), 

  StrField("status", "") 

  ] 

 

# Write Single Coil Payload 

class WriteSingleCoil(Packet): 

 name = "WriteSingleCoil" 

 fields_desc = [ShortField("coilnumber", 0), 

  ByteField("state", 0), 

  ByteField("padding", 0) 

  ] 

 

# Write Single Register Payload 

class WriteSingleRegister(Packet): 

 name= "WriteSingleRegister" 

 fields_desc = [ShortField("regaddress", 0), 

  ShortField("regvalue", 0) 

  ] 

 

# Encapsulated Interface Transport Request Payload 

class EncapsulatedInterfaceRequest(Packet): 

 name= "EncapsulatedInterfaceRequest" 

 fields_desc = [ByteField("meitype", 0), 

  ByteField("deviceid", 1), 

  ByteField("objectid", 0) 

  ] 

 

# Encapsulated Interface Transport Response Payload 

class EncapsulatedInterfaceResponse(Packet): 

 name= "EncapsulatedInterfaceResponse" 

 fields_desc = [ByteField("meitype", 0), 

  ByteField("deviceid", 1), 

  ByteField("conformity", 1), 
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  ByteField("morefollows", 0), 

  ByteField("objectid", 0), 

  ByteField("numobjects",0) 

  ] 

 

# Encapsulated Interface Transport Object Payload 

class EncapsulatedInterfaceObject(Packet): 

 name= "EncapsulatedInterfaceObject" 

 fields_desc = [ByteField("objectid", 0), 

  ByteField("objectlength", 0), 

  StrField("objectvalue","") 

  ] 

 

# Error Payload 

class Error(Packet): 

 name= "Error" 

 fields_desc = [ByteField("code", 1) 

  ] 

 

# Bind Layers 

bind_layers(TCP, Modbus, sport = 502) 

bind_layers(TCP, Modbus, dport = 502) 

 

# Responding to a SYN request 

def responsesyn(packet): 

 global ipid  

 #Write the connection to the syslog 

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' is connecting to the Honeypot Device') 

  

 #Build a packet to send back 

 response = Ether()/IP()/TCP() 

 response[Ether].src = packet[Ether].dst 

 response[Ether].dst = packet[Ether].src 

 response[IP].src = packet[IP].dst 

 response[IP].dst = packet[IP].src 

 ipid = random.randint(1,65535)  

 response[IP].id = ipid 

 ipid = ipid + 1 

 response[IP].flags = 2  

 response[TCP].sport = packet[TCP].dport 

 response[TCP].dport = packet[TCP].sport 

 response[TCP].seq = random.randint(1,4294967295) 

 response[TCP].ack = packet[TCP].seq + 1 

 response[TCP].flags = 'SA' 

 if packet[TCP].window == 1 or packet[TCP].window == 63 or packet[TCP].window == 4 or 

packet[TCP].window == 16: 

  response[TCP].options = [('MSS', 1460), ('NOP', None), ('WScale', 0), ('NOP', None), 

('NOP', None), ('Timestamp', (0, 4294967295))]  

 elif packet[TCP].window == 512: 

  response[TCP].options = [('MSS', 1460),('NOP', None), ('NOP', None), ('Timestamp', (0, 

4294967295))] 

 else: 

  response[TCP].options = packet[TCP].options 

 del(response[IP].chksum) 
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 del(response[TCP].chksum) 

 del(response[IP].len)  

 #sendp will recalculate the checksums and IP length before sending the packet. 

 sendp(response, loop=0) 

 

# Responding to a SYN request 

def responserstack(packet): 

 global ipid  

 #Write the connection to the syslog 

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' is closing the connection to the Honeypot 

Device') 

  

 #Build a packet to send back 

 response = Ether()/IP()/TCP() 

 response[Ether].src = packet[Ether].dst 

 response[Ether].dst = packet[Ether].src 

 response[IP].src = packet[IP].dst 

 response[IP].dst = packet[IP].src 

 response[IP].id = ipid 

 ipid = ipid + 1 

 response[IP].flags = 2 

 response[TCP].sport = packet[TCP].dport 

 response[TCP].dport = packet[TCP].sport 

 response[TCP].seq = packet[TCP].ack 

 response[TCP].ack = packet[TCP].seq + 1 

 response[TCP].flags = 'RA' 

 response[TCP].options = packet[TCP].options 

 del(response[IP].chksum) 

 del(response[TCP].chksum) 

 del(response[IP].len)  

 #sendp will recalculate the checksums and IP length before sending the packet. 

 sendp(response, loop=0) 

 

# Building a response to Read Coil 

def responsereadcoil(packet): 

 global ipid 

 # Build a packet to send back  

 response = Ether()/IP()/TCP() 

 

 if packet.haslayer(ReadCoil): 

 

  # This checks to see if the request was valid in the number of coils it requested. 

  if packet[ReadCoil].quantitycoils > numcoils or packet[ReadCoil].quantitycoils < 1: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Coil request')   

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction  

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 
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  # This checks to see if the starting address is valid and the starting address + Quatity of 

Outputs is valid 

  elif (packet[ReadCoil].startcoil < 0 or packet[ReadCoil].startcoil > numcoils) or 

((packet[ReadCoil].startcoil + packet[ReadCoil].quantitycoils) > numcoils): 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Coil request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

   

  # Else the Read Coil was a valid command 

  else: 

   response = response/Modbus()/ReadCoilResponse() 

   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Coil 

request') 

   

   bytecount = (packet[ReadCoil].quantitycoils/8) 

   partbytecount = packet[ReadCoil].quantitycoils%8 

   if partbytecount != 0: 

    bytecount = bytecount + 1 

   response[ReadCoilResponse].bytecount = bytecount 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].transaction = packet[Modbus].transaction  

   response[Modbus].length = response[ReadCoilResponse].bytecount + 3 

   leadzero = (8 - partbytecount)%8 

   status = [] 

   output = '' 

  

   # This is + 7 because each high order bit is the highest output address.   

   # (Look at Modbus Application Protocol Specification V1.1b at www.Modbus-

IDA.org) 

   current = packet[ReadCoil].startcoil + 7 

    

   # This will build each byte to be sent back to the master. 

   for x in range(0, bytecount): 

    if x == (bytecount-1): 

     for z in range(current,current-leadzero, -1): 

      status.append('0') 

     for k in range(current-leadzero, current-8, -1): 

      status.append(coil[k]) 

     current = current + 8 

     status = ''.join(status) 

     # Below will take the bits and create a byte to be added to the 

output string. 

     temp = BitArray(bin=status) 

     value = temp.uint 

     string = pack('!h', value) 

     output = output + string[1]    
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     status = [] 

    else: 

     for y in range(current, current-8, -1): 

      status.append(coil[y]) 

     current = current + 8 

     status = ''.join(status) 

     # Below will take the bits and create a byte to be added to the 

output string. 

     temp = BitArray(bin=status) 

     value = temp.uint 

     string = pack('!h', value) 

     output = output + string[1]    

     status = [] 

  

   response[ReadCoilResponse].status = output 

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

 

 else: 

  responseerror(packet) 

  

# Building a response to Read Discrete Inputs 

def responsereaddiscreteinputs(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP() 

 

 if packet.haslayer(ReadDiscreteInputs): 

  # This checks to see if the request was valid in the number of inputs it requested. 

  if packet[ReadDiscreteInputs].quantityinputs > numdinputs or 

packet[ReadDiscreteInputs].quantityinputs < 1: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Discrete Input request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 
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   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 

   

  # This checks to see if the starting address is valid and the starting address + Quatity of 

Outputs is valid 

  elif (packet[ReadDiscreteInputs].startinput < 0 or packet[ReadDiscreteInputs].startinput 

>= numdinputs) or ((packet[ReadDiscreteInputs].startinput + packet[ReadDiscreteInputs].quantityinputs) 

>= numdinputs): 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Discrete Input request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

  

  # Else the Read Discrete Inputs was a valid command 

  else: 

   response = response/Modbus()/ReadDiscreteInputsResponse() 

   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Discrete 

Input request') 

  

   bytecount = (packet[ReadDiscreteInputs].quantityinputs/8) 

   partbytecount = packet[ReadDiscreteInputs].quantityinputs%8 

   if partbytecount != 0: 

    bytecount = bytecount + 1 

   response[ReadDiscreteInputsResponse].bytecount = bytecount 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].transaction = packet[Modbus].transaction  

   response[Modbus].function = packet[Modbus].function  

   response[Modbus].length = response[ReadDiscreteInputsResponse].bytecount + 

3 

   leadzero = (8 - partbytecount)%8 

   status = [] 

   output = '' 

  

   # This is + 7 because each high order bit is the highest output address.   

   # (Look at Modbus Application Protocol Specification V1.1b at www.Modbus-

IDA.org) 

   current = packet[ReadDiscreteInputs].startinput + 7 

  

   # This will build each byte to be sent back to the master. 

   for x in range(0, bytecount): 

    if x == (bytecount-1): 

     for z in range(current,current-leadzero, -1): 

      status.append('0') 

     for k in range(current-leadzero, current-8, -1): 

      status.append(dinputs[k]) 
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     current = current + 8 

     # Below will take the bits and create a byte to be added to the 

output string. 

     status = ''.join(status) 

     temp = BitArray(bin=status) 

     value = temp.uint 

     string = pack('!h', value) 

     output = output + string[1]    

     status = [] 

    else: 

     for y in range(current, current-8, -1): 

      status.append(dinputs[y]) 

     current = current + 8 

     # Below will take the bits and create a byte to be added to the 

output string. 

     status = ''.join(status) 

     temp = BitArray(bin=status) 

     value = temp.uint 

     string = pack('!h', value) 

     output = output + string[1]    

     status = [] 

  

   response[ReadDiscreteInputsResponse].status = output  

  

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

 

 else: 

  responseerror(packet) 

  

# Building a response to Read Holding Registers 

def responsereadregisters(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP() 

  

 if packet.haslayer(ReadHoldingRegisters): 
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  # This checks to see if the request was valid in the number of registers it requested. 

  if packet[ReadHoldingRegisters].quantityregs < 1 or 

packet[ReadHoldingRegisters].quantityregs > numholdregisters: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Holding Registers request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 

  

  # This checks to see if the starting address is valid and the starting address + Quatity of 

Outputs is valid 

  elif (packet[ReadHoldingRegisters].startaddress < 0 or 

packet[ReadHoldingRegisters].startaddress >= numholdregisters) or 

((packet[ReadHoldingRegisters].startaddress + packet[ReadHoldingRegisters].quantityregs) >= 

numholdregisters): 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Holding Registers request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

  

  # Else the Read Holding Register Request is valid 

  else: 

   response = response/Modbus()/ReadHoldingRegistersResponse() 

   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Holding 

Registers request') 

  

   response[ReadHoldingRegistersResponse].bytecount = 

packet[ReadHoldingRegisters].quantityregs * 2 

   response[Modbus].length = 

response[ReadHoldingRegistersResponse].bytecount + 3 

   response[Modbus].function = packet[Modbus].function  

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].transaction = packet[Modbus].transaction 

  

   # This will loop and add all the values requested to the status. 

   for x in range(packet[ReadHoldingRegisters].startaddress, 

(packet[ReadHoldingRegisters].startaddress + packet[ReadHoldingRegisters].quantityregs)): 

    response[ReadHoldingRegistersResponse].status = 

response[ReadHoldingRegistersResponse].status + holdregister[x] 

  

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 
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  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096  

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

 

 else: 

  responseerror(packet) 

 

# Building a response to Read Input Registers 

def responsereadinputregisters(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP() 

  

 if packet.haslayer(ReadInputRegisters): 

  # This checks to see if the request was valid in the number of registers it requested. 

  if packet[ReadInputRegisters].quantityregs < 1 or 

packet[ReadInputRegisters].quantityregs > numinputregisters: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Input Registers request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 

  

  # This checks to see if the starting address is valid and the starting address + Quatity of 

Outputs is valid 

  elif (packet[ReadInputRegisters].startaddress < 0 or 

packet[ReadInputRegisters].startaddress >= numinputregisters) or 

((packet[ReadInputRegisters].startaddress + packet[ReadInputRegisters].quantityregs) >= 

numinputregisters): 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Read 

Input Registers request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 
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   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

  

  # Else the Read Input Registers is valid 

  else: 

   response = response/Modbus()/ReadInputRegistersResponse() 

   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Read Input 

Registers request') 

  

   response[ReadInputRegistersResponse].bytecount = 

packet[ReadInputRegisters].quantityregs * 2 

   response[Modbus].length = response[ReadInputRegistersResponse].bytecount + 

3 

   response[Modbus].function = packet[Modbus].function  

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].transaction = packet[Modbus].transaction  

  

   # This will loop and add all the values requested to the status. 

   for x in range(packet[ReadInputRegisters].startaddress, 

(packet[ReadInputRegisters].startaddress + packet[ReadInputRegisters].quantityregs)): 

    response[ReadInputRegistersResponse].status = 

response[ReadInputRegistersResponse].status + inputregister[x] 

  

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

  

 else: 

  responseerror(packet) 

 

# Building a response to Write Single Coil 

def responsewritecoil(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP() 
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 if packet.haslayer(WriteSingleCoil): 

  # This checks to see if the request value was valid. 

  if not (packet[WriteSingleCoil].state == 0 or packet[WriteSingleCoil].state == 255): 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write 

Single Coil request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 

 

  # This checks to see if the coil number is valid  

  elif packet[WriteSingleCoil].coilnumber < 0 or packet[WriteSingleCoil].coilnumber >= 

numcoils: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write 

Single Coil request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

 

  # Else the Write Single Coil request is valid 

  else: 

   response = response/Modbus()/WriteSingleCoil() 

   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Write Single 

Coil request')   

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = packet[Modbus].length 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function 

   response[WriteSingleCoil].state = packet[WriteSingleCoil].state 

   response[WriteSingleCoil].coilnumber = packet[WriteSingleCoil].coilnumber 

    

   # If the value is 255 switch the value to 1 else if it is 0 switch the value to 0. 

   if packet[WriteSingleCoil].state == 255: 

    coil[packet[WriteSingleCoil].coilnumber] = '1' 

   elif packet[WriteSingleCoil].state == 0: 

    coil[packet[WriteSingleCoil].coilnumber] = '0' 

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 
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  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

 

 else: 

  responseerror(packet) 

 

# Building a response to Write Single Register 

def responsewriteregister(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP() 

  

 if packet.haslayer(WriteSingleRegister): 

  # This checks to see if the request value was valid. 

  if packet[WriteSingleRegister].regvalue < 0 or packet[WriteSingleRegister].regvalue > 

65535: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write 

Single Register request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 3 

 

  # This checks to see if the register address is valid. 

  elif packet[WriteSingleRegister].regaddress < 0 or 

packet[WriteSingleRegister].regaddress >= numholdregisters: 

   # Write the error to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID Write 

Single Register request') 

  

   response = response/Modbus()/Error() 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = 3 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function + 128 

   response[Error].code = 2 

   

  # Else the Write Single Register request is valid 

  else: 

   response = response/Modbus()/WriteSingleRegister() 
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   # Write the valid request to the syslog 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a valid Write Single 

Register request')   

 

   response[Modbus].transaction = packet[Modbus].transaction 

   response[Modbus].length = packet[Modbus].length 

   response[Modbus].unit = packet[Modbus].unit 

   response[Modbus].function = packet[Modbus].function  

   response[WriteSingleRegister].regaddress = 

packet[WriteSingleRegister].regaddress 

   response[WriteSingleRegister].regvalue = packet[WriteSingleRegister].regvalue 

   # This updates the value of the register to be changed. 

   holdregister[packet[WriteSingleRegister].regaddress] = pack('!h', 

packet[WriteSingleRegister].regvalue) 

  

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + 12 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

  

 else: 

  responseerror(packet) 

 

def responseencapsulatedinterface(packet): 

 global ipid 

 # Build a packet to send back  

 response = Ether()/IP()/TCP() 

 if packet.haslayer(EncapsulatedInterfaceRequest): 

 

  # This checks to see if the request was valid MEI type 

  if packet[EncapsulatedInterfaceRequest].meitype == 14: 

   # Basic Device Identification Stream 

   if packet[EncapsulatedInterfaceRequest].deviceid == 1: 

    # This must start with a 0 

    if packet[EncapsulatedInterfaceRequest].objectid == 0: 

     syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a 

VALID Encapsulated Interface Read Basic Information Request')  

     response = 

response/Modbus()/EncapsulatedInterfaceResponse() 



 

83 

     response[EncapsulatedInterfaceResponse].meitype = 

packet[EncapsulatedInterfaceRequest].meitype 

     response[EncapsulatedInterfaceResponse].deviceid = 

packet[EncapsulatedInterfaceRequest].deviceid 

     response[EncapsulatedInterfaceResponse].conformity = 1 

     response[EncapsulatedInterfaceResponse].morefollows = 0 

     response[EncapsulatedInterfaceResponse].objectid = 0 

     response[EncapsulatedInterfaceResponse].numobjects = 3 

     length = len(response[EncapsulatedInterfaceResponse]) 

  

     #Building the objects to send in the packet 

     object1 = EncapsulatedInterfaceObject() 

     object1[EncapsulatedInterfaceObject].objectid = 0 

     object1[EncapsulatedInterfaceObject].objectvalue = 

vendorname 

     object1[EncapsulatedInterfaceObject].objectlength = 

len(object1[EncapsulatedInterfaceObject].objectvalue) 

     object2 = EncapsulatedInterfaceObject() 

     object2[EncapsulatedInterfaceObject].objectid = 1 

     object2[EncapsulatedInterfaceObject].objectvalue = 

productcode 

     object2[EncapsulatedInterfaceObject].objectlength = 

len(object2[EncapsulatedInterfaceObject].objectvalue) 

     object3 = EncapsulatedInterfaceObject() 

     object3[EncapsulatedInterfaceObject].objectid = 2 

     object3[EncapsulatedInterfaceObject].objectvalue = 

majorminorrevision 

     object3[EncapsulatedInterfaceObject].objectlength = 

len(object3[EncapsulatedInterfaceObject].objectvalue) 

     response = response/object1/object2/object3 

     length = length + len(object1) + len(object2) + len(object3) + 

2  

     response[Modbus].length = length 

    else: 

     syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an 

INVALID Object ID code ' + str(packet[EncapsulatedInterfaceRequest].objectid))   

  

     response = response/Modbus()/Error() 

     response[Modbus].transaction = packet[Modbus].transaction  

     response[Modbus].length = 3 

     response[Modbus].unit = packet[Modbus].unit 

     response[Modbus].function = packet[Modbus].function + 128 

     response[Error].code = 2 

 

   # One Specific Identification Object 

   elif packet[EncapsulatedInterfaceRequest].deviceid == 4: 

    if packet[EncapsulatedInterfaceRequest].objectid >= 0 and 

packet[EncapsulatedInterfaceRequest].objectid < 3: 

     response = 

response/Modbus()/EncapsulatedInterfaceResponse()/EncapsulatedInterfaceObject() 

     syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent a 

VALID Encapsulated Interface Read Single Device Object Request')  

     response[EncapsulatedInterfaceResponse].meitype = 

packet[EncapsulatedInterfaceRequest].meitype 
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     response[EncapsulatedInterfaceResponse].deviceid = 

packet[EncapsulatedInterfaceRequest].deviceid 

     response[EncapsulatedInterfaceResponse].conformity = 129 

     response[EncapsulatedInterfaceResponse].morefollows = 0 

     response[EncapsulatedInterfaceResponse].objectid = 0 

     response[EncapsulatedInterfaceResponse].numobjects = 1 

     response[EncapsulatedInterfaceObject].objectid = 

packet[EncapsulatedInterfaceRequest].objectid 

     if packet[EncapsulatedInterfaceRequest].objectid == 0: 

      response[EncapsulatedInterfaceObject].objectvalue = 

vendorname 

     elif packet[EncapsulatedInterfaceRequest].objectid == 1: 

      response[EncapsulatedInterfaceObject].objectvalue = 

productcode 

     elif packet[EncapsulatedInterfaceRequest].objectid == 2: 

      response[EncapsulatedInterfaceObject].objectvalue = 

majorminorrevision 

     response[EncapsulatedInterfaceObject].objectlength = 

len(response[EncapsulatedInterfaceObject].objectvalue) 

     response[Modbus].length = 

len(response[EncapsulatedInterfaceResponse]) + len(response[EncapsulatedInterfaceObject]) 

     response[EncapsulatedInterfaceObject].objectid = 

packet[EncapsulatedInterfaceRequest].objectid 

  

    else: 

     syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an 

INVALID Object ID code ' + str(packet[EncapsulatedInterfaceRequest].objectid))   

  

     response = response/Modbus()/Error() 

     response[Modbus].transaction = packet[Modbus].transaction  

     response[Modbus].length = 3 

     response[Modbus].unit = packet[Modbus].unit 

     response[Modbus].function = packet[Modbus].function + 128 

     response[Error].code = 2 

 

   # The Read Device Code is not supported so respond with an error 

   else: 

    syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an 

INVALID Read Device ID code ' + str(packet[EncapsulatedInterfaceRequest].deviceid))   

  

    response = response/Modbus()/Error() 

    response[Modbus].transaction = packet[Modbus].transaction  

    response[Modbus].length = 3 

    response[Modbus].unit = packet[Modbus].unit 

    response[Modbus].function = packet[Modbus].function + 128 

    response[Error].code = 3 

 

  # The MEI Type is not supported 

  else: 

   syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID MEI 

Type ' + str(packet[EncapsulatedInterfaceRequest].meitype)) 

   responseerror(packet) 

   

  response[Modbus].transaction = packet[Modbus].transaction 
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  response[Modbus].unit = packet[Modbus].unit   

  response[Modbus].function = packet[Modbus].function  

  response[Ether].src = packet[Ether].dst 

  response[Ether].dst = packet[Ether].src 

  response[IP].flags = 0 

  response[IP].ttl = 64 

  response[IP].id = ipid 

  ipid = ipid + 1 

  response[IP].src = packet[IP].dst 

  response[IP].dst = packet[IP].src 

  response[TCP].flags = 'PA'  

  response[TCP].sport = packet[TCP].dport 

  response[TCP].dport = packet[TCP].sport 

  response[TCP].seq = packet[TCP].ack 

  response[TCP].ack = packet[TCP].seq + len(packet[TCP].payload) 

  response[TCP].window = 4096 

  del(response[IP].chksum) 

  del(response[TCP].chksum) 

  del(response[IP].len) 

  #sendp will recalculate the checksums and IP length before sending the packet. 

  sendp(response, loop=0) 

 

 else: 

  responseerror(packet) 

 

def responseerror(packet): 

 global ipid 

 # Build a packet to send back 

 response = Ether()/IP()/TCP()/Modbus()/Error() 

  

 # Write the error to the syslog 

 syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an INVALID function code ' + 

str(packet[Modbus].function)) 

 

 response[Ether].src = packet[Ether].dst 

 response[Ether].dst = packet[Ether].src 

 response[IP].flags = 0 

 response[IP].ttl = 64 

 response[IP].id = ipid 

 ipid = ipid + 1 

 response[IP].src = packet[IP].dst 

 response[IP].dst = packet[IP].src 

 response[TCP].flags = 'PA'  

 response[TCP].sport = packet[TCP].dport 

 response[TCP].dport = packet[TCP].sport 

 response[TCP].seq = packet[TCP].ack 

 response[TCP].ack = packet[TCP].seq + len(packet[TCP].payload) 

 response[TCP].window = 4096 

 response[Modbus].transaction = packet[Modbus].transaction 

 response[Modbus].length = 3 

 response[Modbus].unit = packet[Modbus].unit 

  

 # This will change the high order bit to one unless it is already a 1. 

 if packet[Modbus].function > 127: 



 

86 

  response[Modbus].function = packet[Modbus].function 

 else: 

  response[Modbus].function = packet[Modbus].function + 128 

 del(response[IP].chksum) 

 del(response[TCP].chksum) 

 del(response[IP].len) 

 #sendp will recalculate the checksums and IP length before sending the packet. 

 sendp(response, loop=0) 

 

 

def response(packet): 

 if packet.haslayer(TCP): 

  if packet[TCP].dport == 502: 

   originalChecksum=packet[TCP].chksum 

   originalIPChecksum=packet[IP].chksum  

   del packet[IP].chksum  

   del packet[TCP].chksum 

   packet=Ether(str(packet)) 

   recomputedIPChecksum=packet[IP].chksum  

   recomputedChecksum=packet[TCP].chksum 

   if originalChecksum == recomputedChecksum and originalIPChecksum == 

recomputedIPChecksum: 

    if packet.haslayer(Modbus) and packet[Modbus].protocol == 0: 

     if packet[Modbus].function == function_code['Read Coil']: 

      responsereadcoil(packet) 

     elif packet[Modbus].function == function_code['Read 

Discrete Inputs']: 

      responsereaddiscreteinputs(packet) 

     elif packet[Modbus].function == function_code['Read Holding 

Registers']: 

      responsereadregisters(packet) 

     elif packet[Modbus].function == function_code['Read Input 

Registers']: 

      responsereadinputregisters(packet) 

     elif packet[Modbus].function == function_code['Write Single 

Coil']: 

      responsewritecoil(packet) 

     elif packet[Modbus].function == function_code['Write Single 

Register']: 

      responsewriteregister(packet) 

     elif packet[Modbus].function == function_code['Encapsulated 

Interface Transport']: 

      responseencapsulatedinterface(packet) 

     else: 

      responseerror(packet) 

    elif packet[TCP].flags == 2: 

     #send a SYN ACK response 

     responsesyn(packet) 

    elif packet[TCP].flags == 17: 

     #Closing down the connection to a FIN ACK 

     responserstack(packet) 

   elif not originalChecksum == recomputedChecksum: 

    syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an 

INVALID TCP checksum')  
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   else: 

    syslog.syslog(syslog.LOG_ALERT, packet[IP].src + ' sent an 

INVALID IP checksum')  

 return 

 

## This is the Main Script 

sniff(iface="eth0", store = 0, prn=lambda x: response(x)) 
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Appendix C: Emulated PLC Test Case Supporting Figures 

C.1 Functionality Test Through Modbus Traffic Emulation 
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C.2 Fingerprinting Port Scan Test Case 

 

Figure C.7: Nmap Intense Scan All TCP Ports, Emulated PLC 



 

95 

 

Figure C.8: Nmap Intense Scan All TCP Ports, CompactLogix 1769 
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Figure C.9: Nmap Intense Scan All TCP Ports, MicroLogix 1100 
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Figure C.10: Nmap Operating System Scan on Ethernet/IP port ControlLogix 1769 
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Figure C.11: Nmap Operating System Scan on Ethernet/IP port MicroLogix 1100 
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C.3 Fingerprinting Banner Grab Test Case 
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C.4 Invalid Traffic Test Case 
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Appendix D: List of Acronyms  

 

CIKR Critical Infrastructure and Key Resources 

CIP Critical Infrastructure Protection 

CPU Central Processing Unit 

CRC Cyclic Redundancy Check 

DHS Department of Homeland Security 

DMZ Demilitarized Zone 

EIT Encapsulated Interface Transport 

FIFO First-In-First-Out 

GUI Graphical User Interface 

HMI Human Machine Interface 

HSPD Homeland Security Presidential Directive 

IANA Internet Assigned Numbers Authority 

ICS Industrial Control System 

IDS Intrusion Detection System 

IT Information Technology 

MBAP Modbus Application Protocol 

MEI Modbus Encapsulated Interface Transport 

MTU Master Terminal Unit 

OS  Operating System 

PDU Protocol Data Unit 
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PLC Programmable Logic Controller 

RFC Request For Comment 

RTU Remote Terminal Unit 

SCADA Supervisory Control and Data Acquisition 

SSA Sector Specific Agencies 
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